CVD2014-A Database for Evaluating No-Reference Video Quality Assessment Algorithms

被引:111
|
作者
Nuutinen, Mikko [1 ,2 ]
Virtanen, Toni [2 ]
Vaahteranoksa, Mikko [3 ]
Vuori, Tero [3 ,4 ]
Oittinen, Pirkko [5 ]
Hakkinen, Jukka [2 ]
机构
[1] Aalto Univ, Dept Media Technol, Espoo 00076, Finland
[2] Univ Helsinki, Inst Behav Sci, FI-00014 Helsinki, Finland
[3] Microsoft Corp, Espoo 02150, Finland
[4] Intel Corp, Tampere 33720, Finland
[5] Aalto Univ, Dept Comp Sci, FI-00076 Espoo, Finland
关键词
Video camera; quality attribute; subjective evaluation; video quality algorithm; IMAGE; MODELS;
D O I
10.1109/TIP.2016.2562513
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a new video database: CVD2014-Camera Video Database. In contrast to previous video databases, this database uses real cameras rather than introducing distortions via post-processing, which results in a complex distortion space in regard to the video acquisition process. CVD2014 contains a total of 234 videos that are recorded using 78 different cameras. Moreover, this database contains the observer-specific quality evaluation scores rather than only providing mean opinion scores. We have also collected open-ended quality descriptions that are provided by the observers. These descriptions were used to define the quality dimensions for the videos in CVD2014. The dimensions included sharpness, graininess, color balance, darkness, and jerkiness. At the end of this paper, a performance study of image and video quality algorithms for predicting the subjective video quality is reported. For this performance study, we proposed a new performance measure that accounts for observer variance. The performance study revealed that there is room for improvement regarding the video quality assessment algorithms. The CVD2014 video database has been made publicly available for the research community. All video sequences and corresponding subjective ratings can be obtained from the CVD2014 project page (http://www. helsinki. fi/psychology/groups/visualcognition/).
引用
收藏
页码:3073 / 3086
页数:14
相关论文
共 50 条
  • [1] CID2013: A Database for Evaluating No-Reference Image Quality Assessment Algorithms
    Virtanen, Toni
    Nuutinen, Mikko
    Vaahteranoksa, Mikko
    Oittinen, Pirkko
    Hakkinen, Jukka
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (01) : 390 - 402
  • [2] No-Reference Video Shakiness Quality Assessment
    Cui, Zhaoxiong
    Jiang, Tingting
    COMPUTER VISION - ACCV 2016, PT V, 2017, 10115 : 396 - 411
  • [3] COME for No-Reference Video Quality Assessment
    Wang, Chunfeng
    Su, Li
    Zhang, Weigang
    IEEE 1ST CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL (MIPR 2018), 2018, : 232 - 237
  • [4] Predictive no-reference assessment of video quality
    Vega, Maria Torres
    Mocanu, Decebal Constantin
    Stavrou, Stavros
    Liotta, Antonio
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2017, 52 : 20 - 32
  • [5] Predictive no-reference assessment of video quality
    Torres Vega M.
    Mocanu D.C.
    Stavrou S.
    Liotta A.
    Torres Vega, Maria (m.torres.vega@tue.nl), 1600, Elsevier B.V., Netherlands (52): : 20 - 32
  • [6] No-reference screen content video quality assessment
    Li, Teng
    Min, Xiongkuo
    Zhu, Wenhan
    Xu, Yiling
    Zhang, Wenjun
    Displays, 2021, 69
  • [7] No-reference Video Quality Assessment on Mobile Devices
    Chen, Chen
    Song, Li
    Wang, Xiangwen
    Guo, Meng
    2013 IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING (BMSB), 2013,
  • [8] Analysis and Modelling of No-Reference Video Quality Assessment
    Tian, Yuan
    Zhu, Ming
    2009 INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING, PROCEEDINGS, 2009, : 108 - 112
  • [9] No-reference screen content video quality assessment
    Li, Teng
    Min, Xiongkuo
    Zhu, Wenhan
    Xu, Yiling
    Zhang, Wenjun
    DISPLAYS, 2021, 69
  • [10] No-Reference Video Quality Assessment in the Compressed Domain
    Lin, Xiangyu
    Ma, Hanjie
    Luo, Lei
    Chen, Yaowu
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2012, 58 (02) : 505 - 512