A Reference-Inspired Evolutionary Algorithm with Subregion Decomposition for Many-Objective Optimization

被引:1
|
作者
Fu, Xiaogang [1 ]
Sun, Jianyong [2 ]
Zhang, Qingfu [3 ]
机构
[1] Shanghai Dianji Univ, Sch Elect Engn, Shanghai 201306, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[3] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
关键词
Many-objective optimization; Reference-inspired; Domain decomposition; PARETO;
D O I
10.1007/978-3-319-66939-7_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a reference-inspired multiobjective evolutionary algorithm for many-objective optimisation. The main idea is (1) to summarise information inspired by a set of randomly generated reference points in the objective space to strengthen the selection pressure towards the Pareto front; and (2) to decompose the objective space into subregions for diversity management and offspring recombination. We showed that the mutual relationship between the objective vectors and the reference points provides not only a fine selection pressure, but also a balanced convergence-diversity information. The decomposition of the objective space into subregions is able to preserve the Pareto front's diversity. A restricted stable match strategy is proposed to choose appropriate parent solutions from solution sets constructed at the subregions for high-quality offspring generation. Controlled experiments conducted on a commonly-used benchmark test suite have shown the effectiveness and competitiveness of the proposed algorithm in comparison with several state-of-the-art many-objective evolutionary algorithms.
引用
收藏
页码:145 / 156
页数:12
相关论文
共 50 条
  • [1] Reference-Inspired Many-Objective Evolutionary Algorithm Based on Decomposition
    Fu, Xiaogang
    Sun, Jianyong
    COMPUTER JOURNAL, 2018, 61 (07): : 1015 - 1037
  • [2] An Evolutionary Many-Objective Optimization Algorithm Based on Population Decomposition and Reference Distance
    Zheng, Zhe
    Liu, Hai-Lin
    Chen, Lei
    2016 SIXTH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2016, : 388 - 393
  • [3] An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition
    Li, Ke
    Deb, Kalyanmoy
    Zhang, Qingfu
    Kwong, Sam
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2015, 19 (05) : 694 - 716
  • [4] A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization
    Cheng, Ran
    Jin, Yaochu
    Olhofer, Markus
    Sendhoff, Bernhard
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2016, 20 (05) : 773 - 791
  • [5] A reference direction and entropy based evolutionary algorithm for many-objective optimization
    Zhang, Miao
    Li, Huiqi
    APPLIED SOFT COMPUTING, 2018, 70 : 108 - 130
  • [6] An Adaptative Reference Vector Based Evolutionary Algorithm for Many-Objective Optimization
    Li, Junhua
    Chen, Guoyu
    Li, Ming
    Chen, Hao
    IEEE ACCESS, 2019, 7 : 80506 - 80518
  • [7] Dynamical decomposition and selection based evolutionary algorithm for many-objective optimization
    Bao, Qian
    Wang, Maocai
    Dai, Guangming
    Chen, Xiaoyu
    Song, Zhiming
    APPLIED SOFT COMPUTING, 2023, 141
  • [8] An adaptive decomposition-based evolutionary algorithm for many-objective optimization
    Han, Dong
    Du, Wenli
    Du, Wei
    Jin, Yaochu
    Wu, Chunping
    INFORMATION SCIENCES, 2019, 491 : 204 - 222
  • [9] A many-objective evolutionary algorithm based on dominance and decomposition with reference point adaptation
    Zou, Juan
    Zhang, Zhenghui
    Zheng, Jinhua
    Yang, Shengxiang
    KNOWLEDGE-BASED SYSTEMS, 2021, 231
  • [10] A multistage evolutionary algorithm for many-objective optimization
    Shen, Jiangtao
    Wang, Peng
    Dong, Huachao
    Li, Jinglu
    Wang, Wenxin
    INFORMATION SCIENCES, 2022, 589 : 531 - 549