Intelligent tuning method of PID parameters based on iterative learning control for atomic force microscopy

被引:16
|
作者
Liu, Hui [1 ,3 ]
Li, Yingzi [1 ,3 ]
Zhang, Yingxu [2 ,3 ]
Chen, Yifu [1 ,3 ]
Song, Zihang [1 ,3 ]
Wang, Zhenyu [1 ,3 ]
Zhang, Suoxin [1 ,3 ]
Qian, Jianqiang [1 ,3 ]
机构
[1] Beihang Univ, Sch Phys & Nucl Energy Engn, Xueyuan Rd 37, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Instrumentat Sci & Optoelect Engn, Xueyuan Rd 37, Beijing 100191, Peoples R China
[3] Beihang Univ, Key Lab Micronano Measurement Manipulat & Phys, Minist Educ, Xueyuan Rd 37, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Intelligent tuning method; PID parameters; Iterative learning control; Atomic force microscopy; HYBRID; AFM;
D O I
10.1016/j.micron.2017.09.009
中图分类号
TH742 [显微镜];
学科分类号
摘要
Proportional-integral-derivative (PID) parameters play a vital role in the imaging process of an atomic force microscope (AFM). Traditional parameter tuning methods require a lot of manpower and it is difficult to set PID parameters in unattended working environments. In this manuscript, an intelligent tuning method of PID parameters based on iterative learning control is proposed to self-adjust PID parameters of the AFM according to the sample topography. This method gets enough information about the output signals of PID controller and tracking error, which will be used to calculate the proper PID parameters, by repeated line scanning until convergence before normal scanning to learn the topography. Subsequently, the appropriate PID parameters are obtained by fitting method and then applied to the normal scanning process. The feasibility of the method is demonstrated by the convergence analysis. Simulations and experimental results indicate that the proposed method can intelligently tune PID parameters of the AFM for imaging different topographies and thus achieve good tracking performance.
引用
收藏
页码:26 / 36
页数:11
相关论文
共 50 条
  • [1] PID Controller Parameter Tuning Based on Iterative Learning Control
    Tang, Jing
    Hu, Yun'an
    Li, Jing
    [J]. MATERIALS AND MANUFACTURING TECHNOLOGY, PTS 1 AND 2, 2010, 129-131 : 511 - 515
  • [2] Iterative Learning Control for Spiral Scanning Patterns in Atomic Force Microscopy
    de Oliveira, Matheus S.
    Salton, Aurelio T.
    [J]. INTELLIGENT ROBOTICS AND APPLICATIONS (ICIRA 2018), PT II, 2018, 10985 : 389 - 399
  • [3] Iterative Learning Control for Video-Rate Atomic Force Microscopy
    Nikooienejad, Nastaran
    Maroufi, Mohammad
    Moheimani, S. O. Reza
    [J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2021, 26 (04) : 2127 - 2138
  • [4] Adaptive iterative learning PID control based on Markov parameter tuning
    Yin, Jun-Hua
    Bo, Cui-Mei
    Liu, Yan-Ping
    Yang, Lei
    [J]. Gao Xiao Hua Xue Gong Cheng Xue Bao/Journal of Chemical Engineering of Chinese Universities, 2019, 33 (06): : 1490 - 1498
  • [5] Control of PID parameters by iterative learning based on neural network
    Nora, Karkar
    Zarroug, Nadjet
    Tighilt, Yamina
    Benmhamed, Khier
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2021, 97 (04): : 158 - 161
  • [6] An Optimal Approach to Online Tuning Method for PID Type Iterative Learning Control
    Furqan Memon
    Cheng Shao
    [J]. International Journal of Control, Automation and Systems, 2020, 18 : 1926 - 1935
  • [7] An Optimal Approach to Online Tuning Method for PID Type Iterative Learning Control
    Memon, Furqan
    Shao, Cheng
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2020, 18 (08) : 1926 - 1935
  • [8] Active Q control in tuning-fork-based atomic force microscopy
    Jahng, Junghoon
    Lee, Manhee
    Noh, Hanheol
    Seo, Yongho
    Jhe, Wonho
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (02)
  • [9] NARX Prediction-Based Parameters Online Tuning Method of Intelligent PID System
    Liu, Jingwei
    Li, Tianyue
    Zhang, Zheyu
    Chen, Jiaming
    [J]. IEEE ACCESS, 2020, 8 (08): : 130922 - 130936
  • [10] Tuning Rules Selection and Iterative Modification of PID Control System Parameters
    Mozaryn, J.
    Malinowski, K.
    [J]. MECHATRONICS 2013: RECENT TECHNOLOGICAL AND SCIENTIFIC ADVANCES, 2014, : 677 - 684