A Hybrid approach for integer programming combining genetic algorithms, linear programming and ordinal optimization

被引:17
|
作者
Luo, YC [1 ]
Guignard, M
Chen, CH
机构
[1] Chung Cheng Inst Technol, Dept Comp & Informat Sci, Tao Yuan, Taiwan
[2] Univ Penn, Wharton Sch, Dept Operat & Informat Management, Philadelphia, PA 19104 USA
[3] George Mason Univ, Sch Informat Technol & Engn, Dept Syst Engn Operat Res, Fairfax, VA 22030 USA
基金
美国国家科学基金会;
关键词
genetic algorithm; ordinal optimization; linear programming; mixed integer programming; scheduling problems; evolutionary computation;
D O I
10.1023/A:1012256521687
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hybrid methods are promising tools in integer programming, as they combine the best features of different methods in a complementary fashion. This paper presents such a framework, integrating the notions of genetic algorithm, linear programming, and ordinal optimization in an effort to shorten computation times for large and/or difficult integer programming problems. Capitalizing on the central idea of ordinal optimization and on the learning capability of genetic algorithms to quickly generate good feasible solutions, and then using linear programming to solve the problem that results from fixing the integer part of the solution, one may be able to obtain solutions that are close to optimal. Indeed ordinal optimization guarantees the quality of the solutions found. Numerical testing on a real-life complex scheduling problem demonstrates the effectiveness and efficiency of this approach.
引用
收藏
页码:509 / 519
页数:11
相关论文
共 50 条
  • [1] A Hybrid approach for integer programming combining genetic algorithms, linear programming and ordinal optimization
    Yuh-Chyun Luo
    Monique Guignard
    Chun-Hung Chen
    [J]. Journal of Intelligent Manufacturing, 2001, 12 : 509 - 519
  • [2] Tackling the Container Loading problem: A hybrid approach based on Integer Linear Programming and Genetic Algorithms
    Nepomuceno, Napoleao
    Pinheiro, Placido
    Coelho, Andre L. V.
    [J]. EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2007, 4446 : 154 - +
  • [3] An integer linear programming approach for bilinear integer programming
    Freire, Alexandre S.
    Moreno, Eduardo
    Vielma, Juan Pablo
    [J]. OPERATIONS RESEARCH LETTERS, 2012, 40 (02) : 74 - 77
  • [4] EFFICIENCY OF LINEAR PROGRAMMING ALGORITHMS IN SOLVING REAL INTEGER LINEAR PROGRAMMING PROBLEMS
    RICCI
    [J]. ELECTRONISCHE DATENVERARBEITUNG, 1969, 11 (12): : 597 - +
  • [5] INTEGER LINEAR PROGRAMMING - OPTIMIZATION IN CONE
    GONDRAN, M
    [J]. REVUE FRANCAISE D AUTOMATIQUE INFORMATIQUE RECHERCHE OPERATIONNELLE, 1970, 4 (NR2): : 11 - 27
  • [6] Code optimization by integer linear programming
    Kästner, D
    Langenbach, M
    [J]. COMPILER CONSTRUCTION, 1999, 1575 : 122 - 136
  • [7] An integer linear programming approach for pavement maintenance and rehabilitation optimization
    Gomes Correia, Matheus
    Bonates, Tiberius de Oliveira e
    Prata, Bruno de Athayde
    Nobre Junior, Ernesto Ferreira
    [J]. INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2022, 23 (08) : 2710 - 2727
  • [8] MCHP optimization by Dynamic Programming and Mixed Integer Linear Programming
    Faille, D.
    Mondon, C.
    Al-Nasrawi, B.
    [J]. 2007 INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS APPLICATIONS TO POWER SYSTEMS, VOLS 1 AND 2, 2007, : 547 - +
  • [9] Progress in linear programming-based algorithms for integer programming: An exposition
    Johnson, EL
    Nemhauser, GL
    Savelsbergh, MWP
    [J]. INFORMS JOURNAL ON COMPUTING, 2000, 12 (01) : 2 - 23
  • [10] Genetic programming in optimization of algorithms
    Wasiewicz, P
    Mulawka, J
    [J]. COMPUTATIONAL INTELLIGENCE: THEORY AND APPLICATIONS, 1997, 1226 : 581 - 582