A few more trees the chromatic symmetric function can distinguish

被引:7
|
作者
Huryn, Jake [1 ]
Chmutov, Sergei [1 ]
机构
[1] Ohio State Univ, Columbus, OH 43210 USA
来源
INVOLVE, A JOURNAL OF MATHEMATICS | 2020年 / 13卷 / 01期
基金
美国国家科学基金会;
关键词
graph theory; combinatorics; chromatic symmetric function;
D O I
10.2140/involve.2020.13.109
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A well-known open problem in graph theory asks whether Stanley's chromatic symmetric function, a generalization of the chromatic polynomial of a graph, distinguishes between any two nonisomorphic trees. Previous work has proven the conjecture for a class of trees called spiders. This paper generalizes the class of spiders to n-spiders, where normal spiders correspond to n = 1, and verifies the conjecture for n = 2.
引用
收藏
页码:109 / 116
页数:8
相关论文
共 50 条