Ensemble based fuzzy weighted extreme learning machine for gene expression classification

被引:16
|
作者
Wang, Yang [1 ,2 ]
Wang, Anna [1 ]
Ai, Qing [1 ]
Sun, Haijing [1 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Liaoning, Peoples R China
[2] Liaoning Shihua Univ, Sch Comp & Commun Engn, Fushun 113001, Liaoning, Peoples R China
关键词
Gene expression classification; Extreme learning machine; Fuzzy membership; Balance factor; Dissimilarity measure; NEURAL-NETWORKS; DIAGNOSIS;
D O I
10.1007/s10489-018-1322-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-class imbalance is one of the challenging problems in many real-world applications, from medical diagnosis to intrusion detection, etc. Existing methods for gene expression classification usually assume relatively balanced class distribution. However, the assumption is invalid for imbalanced data learning. This paper presents an effective method named EN-FWELM for class imbalance learning. First, based on a fast classifier extreme learning machine (ELM), fuzzy membership of sample is proposed in order to eliminate classification error coming from noise and outlier samples, and balance factor is introduced in combination with sample distribution and sample number associated with class to alleviate the bias against performance caused by imbalanced data. Furthermore, ensemble of ELMs is used for making classification performance more stable and accurate. A number of base ELMs are removed based on dissimilarity measure, and the remaining base ELMs are integrated by majority voting. Finally, experimental results on various gene expression classification and real-world classification demonstrate that the proposed EN-FWELM remarkably outperforms other approaches in the literature.
引用
收藏
页码:1161 / 1171
页数:11
相关论文
共 50 条
  • [1] Ensemble based fuzzy weighted extreme learning machine for gene expression classification
    Yang Wang
    Anna Wang
    Qing Ai
    Haijing Sun
    [J]. Applied Intelligence, 2019, 49 : 1161 - 1171
  • [2] Selective ensemble of doubly weighted fuzzy extreme learning machine for tumor classification
    Wang, Yang
    [J]. PROGRESS IN ARTIFICIAL INTELLIGENCE, 2024, 13 (02) : 85 - 99
  • [3] Dissimilarity based ensemble of extreme learning machine for gene expression data classification
    Lu, Hui-juan
    An, Chun-lin
    Zheng, En-hui
    Lu, Yi
    [J]. NEUROCOMPUTING, 2014, 128 : 22 - 30
  • [4] Ensemble weighted extreme learning machine for imbalanced data classification based on differential evolution
    Zhang, Yong
    Liu, Bo
    Cai, Jing
    Zhang, Suhua
    [J]. NEURAL COMPUTING & APPLICATIONS, 2017, 28 : S259 - S267
  • [5] Ensemble weighted extreme learning machine for imbalanced data classification based on differential evolution
    Yong Zhang
    Bo Liu
    Jing Cai
    Suhua Zhang
    [J]. Neural Computing and Applications, 2017, 28 : 259 - 267
  • [6] Ensemble based reactivated regularization extreme learning machine for classification
    Zhang, Boyang
    Ma, Zhao
    Liu, Yingyi
    Yuan, Haiwen
    Sun, Lingjie
    [J]. NEUROCOMPUTING, 2018, 275 : 255 - 266
  • [7] Ensemble dropout extreme learning machine via fuzzy integral for data classification
    Zhai, Junhai
    Zang, Liguang
    Zhou, Zhaoyi
    [J]. NEUROCOMPUTING, 2018, 275 : 1043 - 1052
  • [8] Fuzzy extreme learning machine for classification
    Zhang, W. B.
    Ji, H. B.
    [J]. ELECTRONICS LETTERS, 2013, 49 (07) : 448 - 449
  • [9] Time Series Prediction based on Ensemble Fuzzy Extreme Learning Machine
    Wang, Hong
    Li, Lei
    Fan, Wei
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2016, : 2001 - 2005
  • [10] A clustering based ensemble of weighted kernelized extreme learning machine for class imbalance learning
    Choudhary, Roshani
    Shukla, Sanyam
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 164