Sub-grid and Spot Detection in DNA Microarray Images Using Optimal Multi-level Thresholding

被引:0
|
作者
Rezaeian, Iman [1 ]
Rueda, Luis [1 ]
机构
[1] Univ Windsor, Sch Comp Sci, Windsor, ON N9B 3P4, Canada
来源
关键词
Microarray image gridding; image analysis; multi level thresholding;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The analysis of DNA microarray images is a crucial step in gene expression analysis, since any errors in early stages are propagated in future steps in the analysis. When processing the underlying images, accurately separating the sub-grids and spots is of extreme importance for subsequent steps that include segmentation, quantification, normalization and clustering. We propose a fully automatic approach that first detects the sub-grids given the entire microarray image, and then detects the locations of the spots in each sub-grid. The approach first detects and corrects rotations in the images by an affine transformation, followed by a polynomial-time optimal multi-level thresholding algorithm to find the positions of the sub-grids and spots. Additionally, a new validity index is proposed in order to find the correct number of sub-grids in the microarray image, and the correct number of spots in each sub-grid. Extensive experiments on real-life microarray images show that the method performs these tasks automatically and with a high degree of accuracy.
引用
收藏
页码:277 / 288
页数:12
相关论文
共 50 条
  • [1] Sub-grid detection in DNA microarray images
    Rueda, Luis
    [J]. ADVANCES IN IMAGE AND VIDEO TECHNOLOGY, PROCEEDINGS, 2007, 4872 : 248 - 259
  • [2] Biofilm Image Segmentation Using Optimal Multi-Level Thresholding
    Rojas, Dario
    Rueda, Luis
    Ngom, Alioune
    Urrutia, Homero
    Carcamo, Gerardo
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2009, : 185 - +
  • [3] Optimal multi-level thresholding with membrane computing
    Peng, Hong
    Wang, Jun
    Perez-Jimenez, Mario J.
    [J]. DIGITAL SIGNAL PROCESSING, 2015, 37 : 53 - 64
  • [4] A multi-level thresholding approach using a hybrid optimal estimation algorithm
    Fan, Shu-Kai S.
    Lin, Yen
    [J]. PATTERN RECOGNITION LETTERS, 2007, 28 (05) : 662 - 669
  • [5] Image segmentation of biofilm structures using optimal multi-level thresholding
    Rojas, Dario
    Rueda, Luis
    Ngom, Alioune
    Hurrutia, Homero
    Carcamo, Gerardo
    [J]. INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2011, 5 (03) : 266 - 286
  • [6] Stable bi-level and multi-level thresholding of images using a new global transformation
    Davies, E. R.
    [J]. IET COMPUTER VISION, 2008, 2 (02) : 60 - 74
  • [7] Performance analysis of multi-level thresholding for microaneurysm detection
    Choong, Kar Heng
    Basah, Shafriza Nisha
    Yazid, Haniza
    Safar, Muhammad Juhairi Aziz
    Saad, Fathinul Syahir Ahmad
    Lim, Chee Chin
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (21) : 31161 - 31180
  • [8] Performance analysis of multi-level thresholding for microaneurysm detection
    Kar Heng Choong
    Shafriza Nisha Basah
    Haniza Yazid
    Muhammad Juhairi Aziz Safar
    Fathinul Syahir Ahmad Saad
    Chee Chin Lim
    [J]. Multimedia Tools and Applications, 2022, 81 : 31161 - 31180
  • [9] Efficient Optimal Multi-level Thresholding for Biofilm Image Segmentation
    Rojas, Dario
    Rueda, Luis
    Urrutia, Homero
    Ngom, Alioune
    [J]. PATTERN RECOGNITION IN BIOINFORMATICS, PROCEEDINGS, 2009, 5780 : 307 - +
  • [10] An Automatic Optic Disk Detection and Segmentation System using Multi-level Thresholding
    Karasulu, Bahadir
    [J]. ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2014, 14 (02) : 161 - 172