AN UNCONDITIONALLY STABLE SEMI-IMPLICIT CUTFEM FOR AN INTERACTION PROBLEM BETWEEN AN ELASTIC MEMBRANE AND AN INCOMPRESSIBLE FLUID

被引:0
|
作者
Dunn, Kyle [1 ,2 ]
Lui, Roger [2 ]
Sarkis, Marcus [2 ]
机构
[1] US Army ERDC, Cold Reg Res & Engn Lab, Hanover, NH 03755 USA
[2] Worcester Polytech Inst, Math Sci Dept, Worcester, MA 01609 USA
基金
美国国家科学基金会;
关键词
immersed boundary method; finite element method; numerical stability; CutFEM; unfitted methods; FINITE-ELEMENT-METHOD; ELLIPTIC INTERFACE PROBLEMS; NAVIER-STOKES EQUATIONS; BLOOD-FLOW; STABILITY; BOUNDARIES;
D O I
10.1553/etna_vol54s296
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce a finite element method for the Stokes equations with a massless immersed membrane. This membrane applies normal and tangential forces affecting the velocity and pressure of the fluid. Additionally, the points representing this membrane move with the local fluid velocity. We design and implement a high-accuracy cut finite element method (CutFEM) which enables the use of a structured mesh that is not aligned with the immersed membrane, and we formulate a time discretization that yields an unconditionally energy stable scheme. We prove that the stability is not restricted by the parameter choices that constrained previous finite element immersed boundary methods and illustrate the theoretical results with numerical simulations.
引用
收藏
页码:296 / 322
页数:27
相关论文
共 50 条
  • [1] An unconditionally stable semi-implicit cutfem for an interaction problem between an elastic membrane and an incompressible fluid
    Dunn, Kyle
    Lui, Roger
    Sarkis, Marcus
    [J]. Electronic Transactions on Numerical Analysis, 2020, 54 : 296 - 322
  • [2] Convergence of an unconditionally stable semi-implicit scheme for linear incompressible MHD equations
    Berroukeche, M
    Maschke, EK
    Saramito, B
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (01): : 81 - 86
  • [3] A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid
    Fernandez, M. A.
    Gerbeau, J. -F.
    Grandmont, C.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 69 (04) : 794 - 821
  • [4] Coupling schemes for incompressible fluid-structure interaction: implicit, semi-implicit and explicit
    Fernández M.A.
    [J]. SeMA Journal, 2011, 55 (1): : 59 - 108
  • [5] An unconditionally stable semi-implicit FSI finite element method
    Lozovskiy, Alexander
    Olshanskii, Maxim A.
    Salamatova, Victoria
    Vassilevski, Yuri V.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 297 : 437 - 454
  • [6] Stable Semi-Implicit Monolithic Scheme for Interaction Between Incompressible Neo-hookean Structure and Navier-Stokes Fluid
    Murea, Cornel Marius
    [J]. JOURNAL OF MATHEMATICAL STUDY, 2019, 52 (04): : 448 - 469
  • [7] Semi-Implicit Incompressible SPH Fluid Simulation in a Marine Simulator
    Duan, Xingfeng
    Ren, Hongxiang
    Qiu, Shaoyang
    Shen, Helong
    [J]. TENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2018), 2019, 11069
  • [8] Semi-Implicit Coupling of CS-FEM and FEM for the Interaction Between a Geometrically Nonlinear Solid and an Incompressible Fluid
    He, Tao
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2015, 12 (05)
  • [9] Moving-particle semi-implicit method for fragmentation of incompressible fluid
    Koshizuka, S
    Oka, Y
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 1996, 123 (03) : 421 - 434
  • [10] An enhanced moving particle semi-implicit method for simulation of incompressible fluid flow and fluid-structure interaction
    Cai, Qinghang
    Chen, Ronghua
    Guo, Kailun
    Tian, Wenxi
    Qiu, Suizheng
    Su, G. H.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 145 : 41 - 57