Improving Anti-Icing and De-Icing Performances via Thermal-Regulation with Macroporous Xerogel

被引:45
|
作者
Yu, Bo [1 ,2 ]
Sun, Zhengrong [1 ,3 ]
Liu, Yubo [2 ,3 ]
Zhang, Zhizhi [2 ]
Wu, Yang [2 ,3 ,4 ]
Zhou, Feng [2 ]
机构
[1] Nanjing Forestry Univ, Coll Sci, Nanjing 210037, Jiangsu, Peoples R China
[2] Chinese Acad Sci, Lanzhou Inst Chem Phys, State Key Lab Solid Lubricat, Lanzhou 730000, Gansu, Peoples R China
[3] Qingdao Ctr Resource Chem & New Mat, Qingdao 266100, Shandong, Peoples R China
[4] Yantai Zhongke Res Inst Adv Mat & Green Chem Engn, Yantai 264006, Shandong, Peoples R China
关键词
xerogel; photothermal; superhydrophobic; anti-icing; de-icing; SURFACES; ICE; NANOCOMPOSITE; WETTABILITY;
D O I
10.1021/acsami.1c08770
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The accumulation of ice in winter has brought many problems in industrial production and everyday life, and how to prevent icing or remove ice rapidly has aroused great attention from researchers in recent years. In this work, we demonstrated a strategy of using a superhydrophobic photothermal and thermal isolation macroporous xerogel (PMX) to delay icing and remove ice efficiently under faint sunlight irradiation. An oriented macroporous xerogel was prepared by an ice templating method, and multi-walled carbon nanotubes acting as the photothermal genesis component under sunlight irradiation were introduced into the xerogel. After fluorination, the PMX presented a robust water repellency and delayed icing. More importantly, numerous macropores in the PMX matrix acted as the thermal barrier that can restrict heat transmission to surroundings at maximum, which guarantees efficient anti-icing and de-icing in low temperature. Water on the PMX surface can never freeze at -30 degrees C under 0.25 kW/m(2) ("0.25 sun") sunlight irradiation. The outdoor experiment also has confirmed the availability of PMX in a natural winter environment. The PMX integrated with thermogenesis and thermo-isolation functions provides a new route for highly efficient anti-icing and de-icing.
引用
收藏
页码:37609 / 37616
页数:8
相关论文
共 50 条
  • [1] Aircraft anti-icing and de-icing techniques and modeling
    Thomas, SK
    Cassoni, RP
    MacArthur, CD
    [J]. JOURNAL OF AIRCRAFT, 1996, 33 (05): : 841 - 854
  • [2] Thermal Spray Coating on Polymeric Composite for De-Icing and Anti-Icing Applications
    Rahimi, Alireza
    Hojjati, Mehdi
    Dolatabadi, Ali
    Moreau, Christian
    [J]. JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2021, 143 (10):
  • [3] Anti-icing and de-icing method of line impedance regulation of bundled conductor
    Jiang, Xingliang
    Wang, Yaoxuan
    Shu, Lichun
    Luo, Baosong
    [J]. Dianwang Jishu/Power System Technology, 2015, 39 (10): : 2941 - 2946
  • [4] A review on passive and active anti-icing and de-icing technologies
    Rekuviene, Regina
    Saeidiharzand, Shaghayegh
    Mazeika, Liudas
    Samaitis, Vykintas
    Jankauskas, Audrius
    Sadaghiani, Abdolali K.
    Gharib, Ghazaleh
    Muganli, Zuelal
    Kosar, Ali
    [J]. APPLIED THERMAL ENGINEERING, 2024, 250
  • [5] Research and application of anti-icing and de-icing on superhydrophobic surfaces
    Wang, Yubo
    Sun, Yongyang
    Xue, Yiqing
    Liang, Wenyan
    [J]. Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2024, 45 (08): : 1497 - 1507
  • [6] Innovative agents for de-icing and anti-icing of the railway infrastructure
    Brzoska, Karolina
    Sikorska, Dorota
    Terpilowski, Konrad
    Jamrozik, Aleksandra
    [J]. PRZEMYSL CHEMICZNY, 2022, 101 (04): : 237 - 240
  • [7] Fabrication of anti-icing/de-icing surfaces by femtosecond laser
    Tang, Bo-Hao
    Wang, Qiang
    Han, Xing-Chen
    Zhou, Hao
    Yan, Xiao-Jing
    Yu, Yi
    Han, Dong-Dong
    [J]. FRONTIERS IN CHEMISTRY, 2022, 10
  • [8] Multi-Stepping and Anti-Icing/De-Icing Devices
    Charpin, J. P. F.
    Verdin, P.
    [J]. PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2008, 2010, 15 : 247 - +
  • [9] A robust superhydrophobic anti-icing/de-icing composite coating with electrothermal and auxiliary photothermal performances
    Zhao, Zehui
    Chen, Huawei
    Zhu, Yantong
    Liu, Xiaolin
    Wang, Zelinlan
    Chen, Jichen
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 227
  • [10] A superhydrophobic coating harvesting mechanical robustness, passive anti-icing and active de-icing performances
    Wu, Binrui
    Cui, Xin
    Jiang, Huayang
    Wu, Nan
    Peng, Chaoyi
    Hu, Zhenfeng
    Liang, Xiubing
    Yan, Yonggan
    Huang, Jun
    Li, Diansen
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 590 : 301 - 310