Nonlinearity-assisted quantum tunnelling in a matter-wave interferometer

被引:20
|
作者
Lee, Chaohong [1 ]
Ostrovskaya, Elena A.
Kivshar, Yuri S.
机构
[1] Australian Natl Univ, Res Sch Phys Sci & Engn, Nonlinear Phys Ctr, Canberra, ACT 0200, Australia
[2] Australian Natl Univ, Res Sch Phys Sci & Engn, ARC Ctr Excellence Quantum Atom Opt, Canberra, ACT 0200, Australia
关键词
D O I
10.1088/0953-4075/40/21/010
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the nonlinearity-assisted quantum tunnelling and formation of nonlinear collective excitations in a matter-wave interferometer, which is realized by the adiabatic transformation of a double-well potential into a single-well harmonic trap. In contrast to the linear quantum tunnelling induced by the crossing ( or avoided crossing) of neighbouring energy levels, the quantum tunnelling between different nonlinear eigenstates is assisted by the nonlinear mean-field interaction. When the barrier between the wells decreases, the mean-field interaction aids quantum tunnelling between the ground and excited nonlinear eigenstates. The resulting non-adiabatic evolution depends on the input states. The tunnelling process leads to the generation of dark solitons, and the number of the generated dark solitons is highly sensitive to the matter-wave nonlinearity. The results of the numerical simulations of the matter-wave dynamics are successfully interpreted with a coupled-mode theory for multiple nonlinear eigenstates.
引用
收藏
页码:4235 / 4244
页数:10
相关论文
共 50 条
  • [1] MATTER-WAVE INTERFEROMETER
    BROWN, WM
    [J]. SCIENCE, 1991, 254 (5030) : 357 - 357
  • [2] Observation of a quantum Cheshire Cat in a matter-wave interferometer experiment
    Denkmayr, Tobias
    Geppert, Hermann
    Sponar, Stephan
    Lemmel, Hartmut
    Matzkin, Alexandre
    Tollaksen, Jeff
    Hasegawa, Yuji
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [3] Observation of a quantum Cheshire Cat in a matter-wave interferometer experiment
    Tobias Denkmayr
    Hermann Geppert
    Stephan Sponar
    Hartmut Lemmel
    Alexandre Matzkin
    Jeff Tollaksen
    Yuji Hasegawa
    [J]. Nature Communications, 5
  • [4] Bright Solitonic Matter-Wave Interferometer
    McDonald, G. D.
    Kuhn, C. C. N.
    Hardman, K. S.
    Bennetts, S.
    Everitt, P. J.
    Altin, P. A.
    Debs, J. E.
    Close, J. D.
    Robins, N. P.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (01)
  • [5] Macroscopicity in an optomechanical matter-wave interferometer
    Xuereb, Andre
    Ulbricht, Hendrik
    Paternostro, Mauro
    [J]. OPTICS COMMUNICATIONS, 2015, 337 : 53 - 56
  • [6] Matter-wave interferometer for large molecules
    Brezger, Björn
    Hackermüller, Lucia
    Uttenthaler, Stefan
    Petschinka, Julia
    Arndt, Markus
    Zeilinger, Anton
    [J]. 2002, American Institute of Physics Inc. (88)
  • [7] Soliton-based matter-wave interferometer
    Polo, J.
    Ahufinger, V.
    [J]. PHYSICAL REVIEW A, 2013, 88 (05):
  • [8] Matter-Wave Index of Refraction, Inertial Sensing, and Quantum Decoherence in an Atom Interferometer
    Hammond, Troy D.
    Chapman, Michael S.
    Lenef, Alan
    Schmiedmayer, Joerg
    Smith, Edward T.
    Rubenstein, Richard A.
    Kokorowski, David A.
    Pritchard, David E.
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 1997, 27 (02) : 193 - 213
  • [9] Nanoscale Magnetism Probed in a Matter-Wave Interferometer
    Fein, Yaakov Y.
    Pedalino, Sebastian
    Shayeghi, Armin
    Kialka, Filip
    Gerlich, Stefan
    Arndt, Markus
    [J]. PHYSICAL REVIEW LETTERS, 2022, 129 (12)
  • [10] Coriolis compensation via gravity in a matter-wave interferometer
    Fein, Yaakov Y.
    Kialka, Filip
    Geyer, Philipp
    Gerlich, Stefan
    Arndt, Markus
    [J]. NEW JOURNAL OF PHYSICS, 2020, 22 (03)