A good alternative to numerical methods of integration for the simulation of chemical kinetics: The Monte Carlo method

被引:0
|
作者
Tighezza, A [1 ]
Aldhayan, D [1 ]
Rezgui, Y [1 ]
Alarifi, A [1 ]
机构
[1] King Saud Univ, Fac Sci, Dept Chem, Riyadh, Saudi Arabia
关键词
Monte Carlo method; chemical kinetics; simulation; reaction mechanims;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper illustrates the ways in which Monte-Carlo method provides a powerful tool for a simulation of complex reactions. New software using this method is described and tested on complex systems, The most important improvement in this software is the suppression of limitations on number of species and number of steps of the reaction mechanism.
引用
收藏
页码:840 / 848
页数:9
相关论文
共 50 条
  • [1] MONTE-CARLO SIMULATION OF NUMERICAL-INTEGRATION
    PRICE, TE
    STORY, DP
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1985, 23 (1-2) : 97 - 112
  • [2] A new Monte Carlo method of the numerical integration "superposing method"
    Kaneko, T
    Tobimatsu, K
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 502 (2-3): : 590 - 592
  • [3] MONTE-CARLO METHODS FOR NUMERICAL-INTEGRATION ON GROUPS
    LIEBMANN, FG
    COMPUTING, 1973, 10 (03) : 255 - 270
  • [4] Simulation of Nuclear Reactor Kinetics by the Monte Carlo Method
    Gomin, E. A.
    Davidenko, V. D.
    Zinchenko, A. S.
    Kharchenko, I. K.
    PHYSICS OF ATOMIC NUCLEI, 2017, 80 (08) : 1399 - 1407
  • [5] Simulation of Nuclear Reactor Kinetics by the Monte Carlo Method
    E. A. Gomin
    V. D. Davidenko
    A. S. Zinchenko
    I. K. Kharchenko
    Physics of Atomic Nuclei, 2017, 80 : 1399 - 1407
  • [6] Numerical simulation of cirrus scattering with the Monte Carlo method
    Yang, Chun-Ping
    He, Xiu-Lan
    Wu, Jian
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2009, 38 (01): : 144 - 147
  • [7] A Monte Carlo method for the numerical simulation of Tsallis statistics
    Salazar, R
    Toral, R
    PHYSICA A, 2000, 283 (1-2): : 59 - 64
  • [8] Error analysis of an adaptive Monte Carlo method for numerical integration
    Karaivanova, A
    Dimov, I
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (2-5) : 201 - 213
  • [9] Application of Monte Carlo numerical integration in natural element method
    Department of Civil Engineering, Shanghai University, Shanghai 200072, China
    不详
    Yantu Gongcheng Xuebao, 2008, 5 (698-704):
  • [10] NUMERICAL-INTEGRATION OF THE LANGEVIN EQUATION - MONTE-CARLO SIMULATION
    ERMAK, DL
    BUCKHOLZ, H
    JOURNAL OF COMPUTATIONAL PHYSICS, 1980, 35 (02) : 169 - 182