On Limited Nondeterminism and ACC Circuit Lower Bounds

被引:0
|
作者
Spakowski, Holger [1 ]
机构
[1] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Rondebosch, South Africa
关键词
Circuit lower bounds; ACC; EXP; TIME; SEARCH;
D O I
10.1007/978-3-319-30000-9_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Williams's celebrated circuit lower bound technique works by showing that the existence of certain small enough nonuniform circuits implies that nondeterministic exponential time can be speeded up in such a way that it implies a contradiction with the nondeterministic time hierarchy. We apply Williams's technique by speeding up instead (i) deterministic exponential-time computations and (ii) nondeterministic exponential-time computations that use only a limited number of nondeterministic bits. From (i), we obtain that EXP subset of ACC(0) has a consequence that might seem unlikely, while (ii) yields an exponential ACC(0) size-depth tradeoff for E-NP[2nc delta], which is the class of exponential-time computation with access to an NP oracle where the number of oracle queries is bounded.
引用
收藏
页码:320 / 329
页数:10
相关论文
共 50 条
  • [1] Lower bounds for computation with limited nondeterminism
    Klauck, H
    [J]. THIRTEENTH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY - PROCEEDINGS, 1998, : 141 - 152
  • [2] Nonuniform ACC Circuit Lower Bounds
    Williams, Ryan
    [J]. JOURNAL OF THE ACM, 2014, 61 (01)
  • [3] Non-Uniform ACC Circuit Lower Bounds
    Williams, Ryan
    [J]. 2011 IEEE 26TH ANNUAL CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC), 2011, : 115 - 125
  • [4] On Uniformity and Circuit Lower Bounds
    Rahul Santhanam
    Ryan Williams
    [J]. computational complexity, 2014, 23 : 177 - 205
  • [5] On Uniformity and Circuit Lower Bounds
    Santhanam, Rahul
    Williams, Ryan
    [J]. COMPUTATIONAL COMPLEXITY, 2014, 23 (02) : 177 - 205
  • [6] Circuit lower bounds and linear codes
    Paturi R.
    Pudlák P.
    [J]. Journal of Mathematical Sciences, 2006, 134 (5) : 2425 - 2434
  • [7] CIRCUIT LOWER BOUNDS A LA KOLMOGOROV
    FORTNOW, L
    LAPLANTE, S
    [J]. INFORMATION AND COMPUTATION, 1995, 123 (01) : 121 - 126
  • [8] LOCALITY FROM CIRCUIT LOWER BOUNDS
    Anderson, Matthew
    van Melkebeek, Dieter
    Schweikardt, Nicole
    Segoufin, Luc
    [J]. SIAM JOURNAL ON COMPUTING, 2012, 41 (06) : 1481 - 1523
  • [9] Circuit lower bounds in bounded arithmetics
    Pich, Jan
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 2015, 166 (01) : 29 - 45
  • [10] On limited versus polynomial nondeterminism
    Feige, U
    Kilian, J
    [J]. CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE, 1997, (01): : 1 - 20