Finite Speed of Propagation for the Thin-Film Equation in Spherical Geometry

被引:0
|
作者
Taranets, R. M. [1 ]
机构
[1] Ukrainian Natl Acad Sci, Inst Appl Math & Mech, Sloviansk, Ukraine
关键词
NONNEGATIVE SOLUTIONS;
D O I
10.1007/s11253-019-01690-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a doubly degenerate thin-film equation obtained in modeling the flows of viscous coatings on spherical surfaces has a finite speed of propagation for nonnegative strong solutions and, hence, there exists an interface or a free boundary separating the regions, where the solution u > 0 and u = 0. By using local entropy estimates, we also establish the upper bound for the rate of propagation of the interface.
引用
收藏
页码:956 / 969
页数:14
相关论文
共 50 条
  • [1] Finite Speed of Propagation for the Thin-Film Equation in Spherical Geometry
    R. M. Taranets
    Ukrainian Mathematical Journal, 2019, 71 : 956 - 969
  • [2] Finite speed of propagation and waiting time for a thin-film Muskat problem
    Laurencot, Philippe
    Matioc, Bogdan-Vasile
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2017, 147 (04) : 813 - 830
  • [3] Vortices in a thin-film superconductor with a spherical geometry
    Dodgson, MJW
    Moore, MA
    PHYSICAL REVIEW B, 1997, 55 (06): : 3816 - 3831
  • [4] FINITE SPEED OF PROPAGATION AND ALGEBRAIC TIME DECAY OF SOLUTIONS TO A GENERALIZED THIN FILM EQUATION
    Min, Lihua
    Yang, Xiaoping
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (02) : 543 - 566
  • [5] INTERFACE PROPAGATION PROPERTIES FOR A NONLOCAL THIN-FILM EQUATION
    De Nitti, Nicola
    Taranets, Roman M.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (01) : 173 - 196
  • [6] GEOMETRY OF THIN-FILM MORPHOLOGY
    MESSIER, R
    YEHODA, JE
    JOURNAL OF APPLIED PHYSICS, 1985, 58 (10) : 3739 - 3746
  • [7] A THIN-FILM SELECTOR IN A SPHERICAL CAVITY
    VODNYTSKII, R
    DLUGASHECK, A
    NOVACK, M
    PESHKO, II
    KHIZHNYAK, AI
    YANKIEVICH, Z
    YATSYUK, FM
    KVANTOVAYA ELEKTRONIKA, 1991, 18 (08): : 989 - 992
  • [8] Optimal lower bounds on asymptotic support propagation rates for the thin-film equation
    Fischer, Julian
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (10) : 3127 - 3149
  • [9] Services speed thin-film designs
    Browne, J
    MICROWAVES & RF, 2004, 43 (11) : 100 - +
  • [10] Characterization of thin-film surfaces by fractal geometry
    Zahn, W
    Zosch, A
    FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY, 1997, 358 (1-2): : 119 - 121