ZnCr LDH nanosheets modified graphitic carbon nitride for enhanced photocatalytic hydrogen production

被引:66
|
作者
Luo, Bing [1 ,2 ]
Song, Rui [1 ,2 ]
Jing, Dengwei [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Int Res Ctr Renewable Energy, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Layered double hydroxide; Nanosheets; Graphitic carbon nitride; Photocatalysis; LAYERED DOUBLE HYDROXIDE; VISIBLE-LIGHT; WATER; EVOLUTION; POLYMERIZATION; EXFOLIATION; NANOHYBRIDS; MORPHOLOGY; CATALYSTS; PROGRESS;
D O I
10.1016/j.ijhydene.2017.03.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
ZnCr layered double hydroxides (ZnCr LDH) nanosheets modified graphitic carbon nitride (g-C3N4) nanohybrids were fabricated via a self-assembly procedure through electrostatic interaction between these two components. Such 2D-2D inorganic-organic hybrid material was employed for photocatalytic hydrogen production under visible light for the first time. The physical and photophysical properties of the hybrid nanocomposites were investigated to reveal the effect of ZnCr LDH nanosheets on the photocatalytic activities of g-C3N4. It was found that 1 wt% ZnCr LDH nanosheets modified g-C3N4 was optimal for the formation of intimate interfacial contact. The visible light photocatalytic H-2 production activity over g-C3N4 was enhanced about 2.8 times after ZnCr LDH nanosheets modification. The significant enhancement in photocatalytic performance for ZnCr LDH/g-C3N4 hetero-junction should be attributed to the promoted charge transfer and separation efficiency, resulting from the intimate interfacial contact and Type II band alignment between ZnCr LDH and g-C3N4. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:23427 / 23436
页数:10
相关论文
共 50 条
  • [1] Modified Graphitic Carbon Nitride Nanosheets for Efficient Photocatalytic Hydrogen Evolution
    Zhou, Xunfu
    Zhu, Yating
    Gao, Qiongzhi
    Zhang, Shengsen
    Ge, Chunyu
    Yang, Siyuan
    Zhong, Xinhua
    Fang, Yueping
    CHEMSUSCHEM, 2019, 12 (22) : 4996 - 5006
  • [2] Ultrathin Graphitic Carbon Nitride Nanosheets for Photocatalytic Hydrogen Evolution
    Zhang, Jian-Hua
    Wei, Mei-Juan
    Wei, Zhang-Wen
    Pan, Mei
    Su, Cheng-Yong
    ACS APPLIED NANO MATERIALS, 2020, 3 (02) : 1010 - 1018
  • [3] Holey Graphitic Carbon Nitride Nanosheets with Carbon Vacancies for Highly Improved Photocatalytic Hydrogen Production
    Liang, Qinghua
    Li, Zhi
    Huang, Zheng-Hong
    Kang, Feiyu
    Yang, Quan-Hong
    ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (44) : 6885 - 6892
  • [4] Nitrogen-doped CeOx nanoparticles modified graphitic carbon nitride for enhanced photocatalytic hydrogen production
    Chen, Jie
    Shen, Shaohua
    Wu, Po
    Guo, Liejin
    GREEN CHEMISTRY, 2015, 17 (01) : 509 - 517
  • [5] Amino modulation on the surface of graphitic carbon nitride for enhanced photocatalytic hydrogen production
    Yang, Heng
    Zhang, Awang
    Ding, Jianjun
    Hu, Rui
    Gong, Yi
    Li, Xiangyang
    Chen, Lin
    Chen, Peng
    Tian, Xingyou
    CARBON, 2024, 219
  • [6] Enhanced boron modified graphitic carbon nitride for the selective photocatalytic production of benzaldehyde
    Quintana, M. Alejandra
    Solis, Rafael R.
    Martin-Lara, M. Angeles
    Blazquez, Gabriel
    Calero, F. Monica
    Munoz-Batisa, Mario J.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 298
  • [7] Double defects modified carbon nitride nanosheets with enhanced photocatalytic hydrogen evolution
    Xu, Guilan
    Shen, Jianchen
    Chen, Shumei
    Gao, Yujie
    Zhang, Huabin
    Zhang, Jian
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (25) : 17471 - 17476
  • [8] Boosting the photocatalytic hydrogen production performance of graphitic carbon nitride nanosheets by tailoring the cyano groups
    Wang, Songcan
    Wang, Xin
    Liu, Boyan
    Xiao, Xiong
    Wang, Lianzhou
    Huang, Wei
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 610 : 495 - 503
  • [9] Phosphorus doped and defect modified graphitic carbon nitride for boosting photocatalytic hydrogen production
    Chen, Lu
    Yan, Guiyang
    Liu, Xiyao
    Ying, Shaoming
    Xia, Yuzhou
    Ning, Shangbo
    Wang, Xuxu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 25 (01) : 117 - 123
  • [10] Naphthalimide-porphyrin hybridized graphitic carbon nitride for enhanced photocatalytic hydrogen production
    Li, Lingling
    Bodedla, Govardhana Babu
    Liu, Zhitian
    Zhu, Xunjin
    APPLIED SURFACE SCIENCE, 2020, 499