Fault detection of lithium-ion battery packs with a graph-based method

被引:38
|
作者
Ma, Guijun [1 ]
Xu, Songpei [2 ]
Cheng, Cheng [2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Fault detection; Lithium-ion battery pack; Graph-based autoencoder; Detection strategy; EXTERNAL SHORT-CIRCUIT; DIAGNOSIS APPROACH; ELECTRIC VEHICLES; HYBRID; SYSTEMS;
D O I
10.1016/j.est.2021.103209
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A fast fault detection of lithium-ion battery (LiB) packs is critically important for electronic vehicles. In previous literatures, an interleaved voltage measurement topology is commonly used to collect working voltage of each cell in LiB packs. However, previous studies ignore the structure information of voltage sensor layout, leading to a large time delay for LiB fault detection. To tackle the above issue, this work proposes a graph-based autoencoder, which uses graph data of voltage sensors to strengthen the reconstruction ability of the traditional autoencoder, and combines the voltage reconstruction errors with a specific detection strategy to identify three common fault types and their locations in LiB packs. Our results obtain the mean AUC of more than 88% for all three fault types and the mean relative detection time of 1.5 s, 11 s and 0.1 s for three fault types, respectively, which perform better than state-of-the-art methods. Moreover, identification of mixed faults is also performed to validate the proposed method, and the results reveal that the proposed method is reliable and fast for fault detection of LiB packs.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Fault diagnosis and abnormality detection of lithium-ion battery packs based on statistical distribution
    Xue, Qiao
    Li, Guang
    Zhang, Yuanjian
    Shen, Shiquan
    Chen, Zheng
    Liu, Yonggang
    JOURNAL OF POWER SOURCES, 2021, 482
  • [2] A novel fault diagnosis method for lithium-Ion battery packs of electric vehicles
    Li, Xiaoyu
    Wang, Zhenpo
    MEASUREMENT, 2018, 116 : 402 - 411
  • [3] Short circuit detection in lithium-ion battery packs
    Bhaskar, Kiran
    Kumar, Ajith
    Bunce, James
    Pressman, Jacob
    Burkell, Neil
    Miller, Nathan
    Rahn, Christopher D.
    APPLIED ENERGY, 2025, 380
  • [4] Leveraging Structures in Fault Diagnosis for Lithium-Ion Battery Packs
    Farakhor, Amir
    Wu, Di
    Wang, Yebin
    Fang, Huazhen
    2024 IEEE 7TH INTERNATIONAL CONFERENCE ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, ICPS 2024, 2024,
  • [5] An Early Minor-Fault Diagnosis Method for Lithium-Ion Battery Packs Based on Unsupervised Learning
    Xin Gu
    Yunlong Shang
    Yongzhe Kang
    Jinglun Li
    Ziheng Mao
    Chenghui Zhang
    IEEE/CAAJournalofAutomaticaSinica, 2023, 10 (03) : 810 - 812
  • [6] An Early Minor-Fault Diagnosis Method for Lithium-Ion Battery Packs Based on Unsupervised Learning
    Gu, Xin
    Shang, Yunlong
    Kang, Yongzhe
    Li, Jinglun
    Mao, Ziheng
    Zhang, Chenghui
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2023, 10 (03) : 810 - 812
  • [7] Sensor fault diagnosis for lithium-ion battery packs based on thermal and electrical models
    Tian, Jiaqiang
    Wang, Yujie
    Chen, Zonghai
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2020, 121
  • [8] A novel graph-based framework for state of health prediction of lithium-ion battery
    Yao, Xing-Yan
    Chen, Guolin
    Pecht, Michael
    Chen, Bin
    JOURNAL OF ENERGY STORAGE, 2023, 58
  • [9] A New Equalization Method for Lithium-Ion Battery Packs Based on CUK Converter
    Zhang, Yu
    Tian, Sheng
    Zhang, Yongkang
    Energy Engineering: Journal of the Association of Energy Engineering, 2024, 121 (06): : 1459 - 1472
  • [10] A Rapid-Accurate Fault Diagnosis Method Based on Cumulative Probability Distribution for Lithium-Ion Battery Packs
    Zhang, Zhen
    Gu, Xin
    Mao, Ziheng
    Li, Jinglun
    Li, Xiangjun
    Shang, Yunlong
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2025, 72 (04) : 3896 - 3904