Krieger's finite generator theorem for actions of countable groups III

被引:2
|
作者
Alpeev, Andrei [1 ]
Seward, Brandon [2 ]
机构
[1] St Petersburg State Univ, Chebyshev Lab, 14th Line 29B, St Petersburg 199178, Russia
[2] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
entropy; generating partition; generator; non-ergodic; non-amenable; ENTROPY; BOREL;
D O I
10.1017/etds.2020.89
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We continue the study of Rokhlin entropy, an isomorphism invariant for probability-measure-preserving (p.m.p.) actions of countablegroups introduced in Part I [B. Seward. Krieger's finite generator theorem for actions of countable groups I. Invent. Math. 215(1) (2019), 265-310]. In this paper we prove a non-ergodic finite generator theorem and use it to establish sub-additivity and semicontinuity properties of Rokhlin entropy. We also obtain formulas for Rokhlin entropy in terms of ergodic decompositions and inverse limits. Finally, we clarify the relationship between Rokhlin entropy, sofic entropy, and classical Kolmogorov-Sinai entropy. In particular, using Rokhlin entropy we give a new proof of the fact that ergodic actions with positive sofic entropy have finite stabilizers.
引用
收藏
页码:2881 / 2917
页数:37
相关论文
共 50 条