Attractors for nonlinear reaction-diffusion systems in unbounded domains via the method of short trajectories

被引:11
|
作者
Grasselli, Maurizio [1 ]
Prazak, Dalibor
Schimperna, Giulio [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
关键词
Reaction-diffusion system; Unbounded domain; Global attractor; Kolmogorov's epsilon-entropy; LARGE TIME BEHAVIOR; GLOBAL ATTRACTOR; ASYMPTOTIC-BEHAVIOR; EVOLUTION-EQUATIONS; EXISTENCE;
D O I
10.1016/j.jde.2010.06.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a nonlinear reaction-diffusion equation on the whole space R-d. We prove the well-posedness of the corresponding Cauchy problem in a general functional setting, namely, when the initial datum is uniformly locally bounded in L-2 only. Then we adapt the short trajectory method to establish the existence of the global attractor and, if d <= 3, we find an upper bound of its Kolmogorov's epsilon-entropy. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2287 / 2315
页数:29
相关论文
共 50 条