A General Procedure for Introducing Structured Nonorthogonal Discretization Grids Into High-Order Finite-Difference Time-Domain Methods

被引:8
|
作者
Armenta, Roberto B. [1 ]
Sarris, Costas D. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M2N 3T8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Finite-difference time-domain (FDTD) methods; waveguide components; MAXWELLS EQUATIONS; FDTD; SCHEMES;
D O I
10.1109/TMTT.2010.2049921
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes a general procedure for introducing structured nonorthogonal discretization grids into any high-order finite-difference time-domain method originally formulated on a uniform rectangular grid. The proposed procedure employs a coordinate transformation to map a conformal grid-a grid where all cells conform to the material boundaries of the given problem-onto a uniform rectangular grid where any high-order finite-difference scheme can be easily applied.
引用
收藏
页码:1818 / 1829
页数:12
相关论文
共 50 条
  • [1] A General Methodology for Introducing Structured Nonorthogonal Grids into High-Order Finite-Difference Time-Domain Methods
    Armenta, Roberto B.
    Sarris, Costas D.
    2009 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM, VOLS 1-3, 2009, : 257 - 260
  • [2] A General Method for Introducing Structured Nonorthogonal Grids into High-Order Finite-Difference Time-Domain Methods: Formulation and Interrelations with the Design of Metamaterials
    Armenta, Roberto B.
    Sarris, Costas D.
    2009 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM AND USNC/URSI NATIONAL RADIO SCIENCE MEETING, VOLS 1-6, 2009, : 840 - 843
  • [3] High-order compact finite-difference methods on general overset grids
    Sherer, SE
    Scott, JN
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 210 (02) : 459 - 496
  • [4] Finite-difference time-domain methods
    Teixeira, F. L.
    Sarris, C.
    Zhang, Y.
    Na, D. -Y.
    Berenger, J. -P.
    Su, Y.
    Okoniewski, M.
    Chew, W. C.
    Backman, V.
    Simpson, J. J.
    NATURE REVIEWS METHODS PRIMERS, 2023, 3 (01):
  • [5] Finite-difference time-domain methods
    F. L. Teixeira
    C. Sarris
    Y. Zhang
    D.-Y. Na
    J.-P. Berenger
    Y. Su
    M. Okoniewski
    W. C. Chew
    V. Backman
    J. J. Simpson
    Nature Reviews Methods Primers, 3
  • [6] Unconditionally stable finite-difference time-domain methods with high-order accuracy in two and three dimensions
    Kong, Y. D.
    Chu, Q. X.
    IET MICROWAVES ANTENNAS & PROPAGATION, 2010, 4 (10) : 1605 - 1616
  • [7] Optimized High-order Finite-Difference Time-Domain (2,4) Method
    Zhu, Min
    Zhao, Lei
    Cao, Qunsheng
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL ELECTROMAGNETICS (ICCEM), 2015, : 324 - 326
  • [8] A high-order finite-difference scheme for time-domain modeling of time-varying seismoelectric waves
    Ji, Yanju
    Han, Li
    Huang, Xingguo
    Zhao, Xuejiao
    Jensen, Kristian
    Yu, Yibing
    GEOPHYSICS, 2022, 87 (02) : T135 - T146
  • [9] Simplified Graphical Processor Acceleration of the Standard and High-Order Finite-Difference Time-Domain Algorithms
    Hadi, Mohammed F.
    ELECTROMAGNETICS, 2012, 32 (07) : 401 - 410
  • [10] CONFORMAL FINITE-DIFFERENCE TIME-DOMAIN (FDTD) WITH OVERLAPPING GRIDS
    YEE, KS
    CHEN, JS
    CHANG, AH
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1992, 40 (09) : 1068 - 1075