Finite volume relaxation schemes for multidimensional conservation laws

被引:0
|
作者
Katsaounis, T
Makridakis, C
机构
[1] Ecole Normale Super, Dept Math & Informat, F-75230 Paris 05, France
[2] Univ Crete, Dept Math, Heraklion 71409, Crete, Greece
[3] FORTH, Inst Appl & Computat Math, Heraklion 71110, Crete, Greece
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider finite volume relaxation schemes for multidimensional scalar conservation laws. These schemes are constructed by appropriate discretization of a relaxation system and it is shown to converge to the entropy solution of the conservation law with a rate of h(1/4) in L-infinity([0, T], L-loc(1) (R-d)).
引用
收藏
页码:533 / 553
页数:21
相关论文
共 50 条
  • [1] Centred unsplit finite volume schemes for multidimensional hyperbolic conservation laws
    Toro, EF
    Hu, W
    [J]. GODUNOV METHODS: THEORY AND APPLICATIONS, 2001, : 899 - 906
  • [2] Convergence and error estimates of relaxation schemes for multidimensional conservation laws
    Katsoulakis, MA
    Kossioris, G
    Makridakis, C
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (3-4) : 395 - 424
  • [3] Relaxation WENO schemes for multidimensional hyperbolic systems of conservation laws
    Banda, Mapundi
    Seaid, Mohammed
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (05) : 1211 - 1234
  • [4] Finite volume schemes for locally constrained conservation laws
    Andreianov, Boris
    Goatin, Paola
    Seguin, Nicolas
    [J]. NUMERISCHE MATHEMATIK, 2010, 115 (04) : 609 - 645
  • [5] Finite volume schemes for locally constrained conservation laws
    Boris Andreianov
    Paola Goatin
    Nicolas Seguin
    [J]. Numerische Mathematik, 2010, 115 : 609 - 645
  • [6] Finite Volume HWENO Schemes for Nonconvex Conservation Laws
    Xiaofeng Cai
    Jianxian Qiu
    Jingmei Qiu
    [J]. Journal of Scientific Computing, 2018, 75 : 65 - 82
  • [7] Finite Volume HWENO Schemes for Nonconvex Conservation Laws
    Cai, Xiaofeng
    Qiu, Jianxian
    Qiu, Jingmei
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (01) : 65 - 82
  • [8] Adaptive finite element relaxation schemes for hyperbolic conservation laws
    Arvanitis, C
    Katsaounis, T
    Makridakis, C
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (01): : 17 - 33
  • [9] Fully adaptive multiresolution finite volume schemes for conservation laws
    Cohen, A
    Kaber, SM
    Müller, S
    Postel, M
    [J]. MATHEMATICS OF COMPUTATION, 2003, 72 (241) : 183 - 225
  • [10] SEMI-CONSERVATIVE FINITE VOLUME SCHEMES FOR CONSERVATION LAWS
    Pidatella, Rosa Maria
    Puppo, Gabriella
    Russo, Giovanni
    Santagati, Pietro
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (03): : B576 - B600