Enhanced tunneling current effect for nonvolatile memory applications

被引:15
|
作者
Govoreanu, B [1 ]
Blomme, P [1 ]
Van Houdt, J [1 ]
De Meyer, K [1 ]
机构
[1] IMEC, SPDT Div, B-3001 Louvain, Belgium
关键词
nonvolatile memory; tunnel barrier; enhanced. tunneling current; low-voltage programming; high-k dielectric materials;
D O I
10.1143/JJAP.42.2020
中图分类号
O59 [应用物理学];
学科分类号
摘要
High-k insulators are currently considered for SiO2 replacement as gate dielectrics in sub-100nm complementary metal-oxide-semiconductor (CMOS) technology nodes. The use of double-layer high-k stacks as tunnel dielectrics could bring important benefits in the nonvolatile memory operation by either reducing the operating voltages and/or increasing the, programming speed. In this paper, the influence of the high-k parameters on the tunneling current and requirements for achieving higher programming speed without compromising retention are discussed. We show that enhancement of the tunneling current is possible with two-layer low-k/high-k dielectric stacks and confirm the theoretical results based on our experimental data.
引用
收藏
页码:2020 / 2024
页数:5
相关论文
共 50 条
  • [1] Enhanced tunneling current effect for nonvolatile memory applications
    Govoreanu, B. (govorean@imec.be), 2020, Japan Society of Applied Physics (42):
  • [2] Modeling of tunneling current and gate dielectric reliability for nonvolatile memory devices
    Gehring, A
    Selberherr, S
    IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2004, 4 (03) : 306 - 319
  • [3] NrGO Floating Gate/SiOXNY Tunneling Layer Stack for Nonvolatile Flash Memory Applications
    Soni, Mahesh
    Soni, Ajay
    Sharma, Satinder K.
    IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2020, 20 (03) : 570 - 575
  • [4] Redox Molecules for a Resonant Tunneling Barrier in Nonvolatile Memory
    Shaw, Jonathan
    Xu, Qianyin
    Rajwade, Shantanu
    Hou, Tuo-Hung
    Kan, Edwin Chihchuan
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (04) : 1189 - 1198
  • [5] Nonvolatile memory with molecule-engineered tunneling barriers
    Hou, Tuo-Hung
    Raza, Hassan
    Afshari, Kamran
    Ruebusch, Daniel J.
    Kan, Edwin C.
    APPLIED PHYSICS LETTERS, 2008, 92 (15)
  • [6] Effect of CdSe nanoparticles in polymethylmethacrylate tunneling layer on the performance of nonvolatile organic memory device
    Kim, Jung-Min
    Shin, Ik-Soo
    Yoo, Seok-Hyun
    Jeun, Jun-Ho
    Lee, Jihee
    Kim, Ayoung
    Kim, Han-Soo
    Ge, Ziyi
    Hong, Jong-In
    Bang, Jin Ho
    Kim, Yong-Sang
    MICROELECTRONIC ENGINEERING, 2012, 98 : 305 - 308
  • [7] Formation of Ru nanocrystals by plasma enhanced atomic layer deposition for nonvolatile memory applications
    Yim, Sung-Soo
    Lee, Moon-Sang
    Kim, Ki-Su
    Kim, Ki-Bum
    APPLIED PHYSICS LETTERS, 2006, 89 (09)
  • [8] Current Status of Nonvolatile Semiconductor Memory Technology
    Fujisaki, Yoshihisa
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (10) : 1000011 - 1000014
  • [9] Current and future ferroelectric nonvolatile memory technology
    Fox, GR
    Chu, F
    Davenport, T
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2001, 19 (05): : 1967 - 1971
  • [10] Pi-gate tunneling field-effect transistor charge trapping nonvolatile memory based on all tunneling transportation
    Jhan, Yi-Ruei
    Wu, Yung-Chun
    Lin, Hsin-Yi
    Hung, Min-Feng
    APPLIED PHYSICS LETTERS, 2013, 103 (05)