Rayleigh-Benard convection of viscoelastic fluids in finite domains

被引:40
|
作者
Park, HM [1 ]
Ryu, DH [1 ]
机构
[1] Sogang Univ, Dept Chem Engn, Mapo Gu, Seoul, South Korea
关键词
Rayleigh-Benard convection; finite domains; viscoelastic fluids;
D O I
10.1016/S0377-0257(01)00104-5
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We investigate the linear stability problem of the Rayleigh-Benard convection of viscoelastic fluids in a two-dimensional rectangular box with nonslip sidewalls, where there may exist a heat source to enhance or suppress the convection. A Chebyshev pseudospectral method is generalized to solve the hydrodynamic stability problem. We adopt a very general constitutive equation that encompasses the Maxwell model, the Oldroyd model and the Phan-Thien-Tanner model, The effects of box aspect ratio, heat source, the Deborah number lambda and the dimensionless retardation time epsilon On the critical Rayleigh number and convection cell size are examined. The range of lambda and the epsilon for the onset of overstability is also obtained for a given box aspect ratio, The results of the present paper may be used to investigate the appropriateness of a constitutive equation and its parameter values adopted for a given viscoelastic fluid. (C) 2001 Elsevier Science B.V, All rights reserved.
引用
收藏
页码:169 / 184
页数:16
相关论文
共 50 条
  • [1] Rayleigh-Benard convection of viscoelastic fluids in arbitrary finite domains
    Park, HM
    Park, KS
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2004, 47 (10-11) : 2251 - 2259
  • [2] Peculiarity in the Rayleigh-Benard convection of viscoelastic fluids
    Park, H. M.
    [J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2018, 132 : 34 - 41
  • [3] STUDY ON THE CHARACTERISTICS OF RAYLEIGH-BENARD CONVECTION WITH VISCOELASTIC FLUIDS
    Cai, Weihua
    Ye, Qin
    Chen, Jianping
    Zhang, Hongna
    Wei, Tongzhou
    Li, Feng-chen
    [J]. PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER MEETING, 2016, VOL 1B, 2016,
  • [4] Rayleigh-Benard convection of viscoelastic fluids in three-dimension finite cavity
    Zheng, Xin
    Wang, Chao
    Peng, Xin-Yu
    Zhang, Shuo
    Zhang, Hong-Na
    Wang, Yue
    Cai, Wei-Hua
    [J]. PHYSICS OF FLUIDS, 2023, 35 (08)
  • [5] Finite-amplitude Rayleigh-Benard convection and pattern selection for viscoelastic fluids
    Li, ZY
    Khayat, RE
    [J]. JOURNAL OF FLUID MECHANICS, 2005, 529 : 221 - 251
  • [6] Pattern selection in Rayleigh-Benard convection with nonlinear viscoelastic fluids
    Zheng, Xin
    Hagani, Fouad
    Boutaous, M'hamed
    Knikker, Ronnie
    Xin, Shihe
    Siginer, Dennis A.
    [J]. PHYSICAL REVIEW FLUIDS, 2022, 7 (02)
  • [7] Rayleigh-Benard convection of viscoelastic fluid
    Demir, H
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2003, 136 (2-3) : 251 - 267
  • [8] Rayleigh-Benard convection in rotating fluids
    Tagare, S. G.
    Babu, A. Benerji
    Rameshwar, Y.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2008, 51 (5-6) : 1168 - 1178
  • [9] Rayleigh-Benard convection of Casson fluids
    Aghighi, M. S.
    Ammar, A.
    Metivier, C.
    Gharagozlu, M.
    [J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2018, 127 : 79 - 90
  • [10] Rayleigh-Benard convection for viscoplastic fluids
    Darbouli, Mohamed
    Metivier, Christel
    Piau, Jean-Michel
    Magnin, Albert
    Abdelali, Ahmed
    [J]. PHYSICS OF FLUIDS, 2013, 25 (02)