Multi-scale Dynamic Network for Temporal Action Detection

被引:2
|
作者
Ren, Yifan [1 ,2 ]
Xu, Xing [1 ,2 ]
Shen, Fumin [1 ,2 ]
Wang, Zheng [1 ,2 ]
Yang, Yang [1 ,2 ]
Shen, Heng Tao [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Ctr Future Media, Chengdu, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
Temporal Action Detection; Dynamic Filters; Multi-scale Features;
D O I
10.1145/3460426.3463613
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, as the fundamental task in video understanding, Temporal Action Detection is attracting extensive attention. Most existing approaches use the same model parameters to process all input videos, which are not adaptive to the input video during the inference stage. In this paper, we propose a novel model termed Multi-scale Dynamic Network (MDN) to tackle this problem. The proposed MDN model incorporates multiple Multi-scale Dynamic Modules (MDMs). Each MDM can generate video-specific and segment-specific convolution kernels based on video content from different scales and adaptively capture rich semantic information for the prediction. Besides, we also design a new Edge Suppression Loss (ESL) function for MDN to pay more attention to hard examples. Extensive experiments conducted on two popular benchmarks ActivityNet-1.3 and THUMOS-14 show that the proposed MDN model achieves the state-of-the-art performance.
引用
收藏
页码:267 / 275
页数:9
相关论文
共 50 条
  • [1] MCMNET: Multi-Scale Context Modeling Network for Temporal Action Detection
    Zhang, Haiping
    Zhou, Fuxing
    Ma, Conghao
    Wang, Dongjing
    Zhang, Wanjun
    SENSORS, 2023, 23 (17)
  • [2] Multi-scale aggregation network for temporal action proposals
    Wang, Zheng
    Chen, Kai
    Zhang, Mingxing
    He, Peilin
    Wang, Yajie
    Zhu, Ping
    Yang, Yang
    PATTERN RECOGNITION LETTERS, 2019, 122 : 60 - 65
  • [3] Multi-Scale Structure-Aware Network for Weakly Supervised Temporal Action Detection
    Yang, Wenfei
    Zhang, Tianzhu
    Mao, Zhendong
    Zhang, Yongdong
    Tian, Qi
    Wu, Feng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 5848 - 5861
  • [4] Multi-Scale Structure-Aware Network for Weakly Supervised Temporal Action Detection
    Yang, Wenfei
    Zhang, Tianzhu
    Mao, Zhendong
    Zhang, Yongdong
    Tian, Qi
    Wu, Feng
    IEEE Transactions on Image Processing, 2021, 30 : 5848 - 5861
  • [5] Dynamic Temporal Pyramid Network: A Closer Look at Multi-scale Modeling for Activity Detection
    Zhang, Da
    Dai, Xiyang
    Wang, Yuan-Fang
    COMPUTER VISION - ACCV 2018, PT IV, 2019, 11364 : 712 - 728
  • [6] Feature Pyramid Hierarchies for Multi-scale Temporal Action Detection
    He, Jiayu
    Li, Guohui
    Lei, Jun
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 2158 - 2165
  • [7] Multi-Scale Proposal Regression Network for Temporal Action Proposal Generation
    Zheng, Jingye
    Chen, Dihu
    Hu, Haifeng
    IEEE ACCESS, 2019, 7 : 183860 - 183868
  • [8] MS-TCT: Multi-Scale Temporal ConvTransformer for Action Detection
    Dai, Rui
    Das, Srijan
    Kahatapitiya, Kumara
    Ryoo, Michael S.
    Bremond, Francois
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 20009 - 20019
  • [9] A Multi-Scale Spatio-Temporal Network for Violence Behavior Detection
    Zhou, Wei
    Min, Xuanlin
    Zhao, Yiheng
    Pang, Yiran
    Yi, Jun
    IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE, 2023, 5 (02): : 266 - 276
  • [10] Temporal refinement network: Combining dynamic convolution and multi-scale information for fine-grained action recognition
    Di, Jirui
    Hu, Zhengping
    Bi, Shuai
    Zhang, Hehao
    Wang, Yulu
    Sun, Zhe
    IMAGE AND VISION COMPUTING, 2024, 147