Contrastive Self-Supervised Learning: A Survey on Different Architectures

被引:25
|
作者
Khan, Adnan [1 ]
AlBarri, Sarah [2 ]
Manzoor, Muhammad Arslan [3 ]
机构
[1] MBZUAI, Dept Comp Vis, Abu Dhabi, U Arab Emirates
[2] MBZUAI, Dept Machine Learning, Abu Dhabi, U Arab Emirates
[3] MBZUAI, Dept Nat Language Proc, Abu Dhabi, U Arab Emirates
关键词
Self-Supervised Learning; Contrastive Learning; Image Augmentation; Data Annotation;
D O I
10.1109/ICAI55435.2022.9773725
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Self-Supervised Learning (SSL) has enhanced the learning process of semantic representations from images. SSL has reduced the need for annotating or labelling the data by relying less on class labels during the training phase. SSL techniques dependent on Constrative Learning (CL) are acquiring prevalence because of their low dependency on training data labels. Different CL methods are producing state-of-the-art results on datasets which are used as the benchmarks for Supervised Learning. In this survey, we provide a review of CL-based methods including SimCLR, MoCo, BYOL, SwAV, SimTriplet and SimSiam. We compare these pipelines in terms of their accuracy on ImageNet and VOC07 benchmark. BYOL propose basic yet powerful architecture to accomplish 74.30% accuracy score on image classification task. Using clustering approach SwAV outperforms other architectures by achieving 75.30% top-1 ImageNet classification accuracy. In addition, we shed light on the importance of CL approaches which can maximise the use of huge amounts of data available today. At last, we report the impediments of current CL methodologies and emphasize the need of computationally efficient CL pipelines.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [1] A Survey on Contrastive Self-Supervised Learning
    Jaiswal, Ashish
    Babu, Ashwin Ramesh
    Zadeh, Mohammad Zaki
    Banerjee, Debapriya
    Makedon, Fillia
    [J]. TECHNOLOGIES, 2021, 9 (01)
  • [2] Contrastive Self-supervised Learning in Recommender Systems: A Survey
    Jing, Mengyuan
    Zhu, Yanmin
    Zang, Tianzi
    Wang, Ke
    [J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (02)
  • [3] Adversarial Self-Supervised Contrastive Learning
    Kim, Minseon
    Tack, Jihoon
    Hwang, Sung Ju
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [4] Self-Supervised Learning: Generative or Contrastive
    Liu, Xiao
    Zhang, Fanjin
    Hou, Zhenyu
    Mian, Li
    Wang, Zhaoyu
    Zhang, Jing
    Tang, Jie
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 857 - 876
  • [5] A comprehensive perspective of contrastive self-supervised learning
    Songcan CHEN
    Chuanxing GENG
    [J]. Frontiers of Computer Science., 2021, (04) - 104
  • [6] On Compositions of Transformations in Contrastive Self-Supervised Learning
    Patrick, Mandela
    Asano, Yuki M.
    Kuznetsova, Polina
    Fong, Ruth
    Henriques, Joao F.
    Zweig, Geoffrey
    Vedaldi, Andrea
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9557 - 9567
  • [7] Contrastive Self-supervised Learning for Graph Classification
    Zeng, Jiaqi
    Xie, Pengtao
    [J]. THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10824 - 10832
  • [8] A comprehensive perspective of contrastive self-supervised learning
    Songcan Chen
    Chuanxing Geng
    [J]. Frontiers of Computer Science, 2021, 15
  • [9] Slimmable Networks for Contrastive Self-supervised Learning
    Zhao, Shuai
    Zhu, Linchao
    Wang, Xiaohan
    Yang, Yi
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024,
  • [10] Group Contrastive Self-Supervised Learning on Graphs
    Xu, Xinyi
    Deng, Cheng
    Xie, Yaochen
    Ji, Shuiwang
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) : 3169 - 3180