High-dose insulin therapy in beta-blocker and calcium channel-blocker poisoning

被引:120
|
作者
Engebretsen, Kristin M. [1 ]
Kaczmarek, Kathleen M. [2 ]
Morgan, Jenifer [2 ]
Holger, Joel S.
机构
[1] Reg Hosp, Dept Emergency Med, Clin Toxicol Serv, St Paul, MN 55101 USA
[2] Univ Minnesota, Coll Pharm, Minneapolis, MN 55455 USA
关键词
High-dose insulin; Beta-blocker; Calcium-channel blocker; Poisoning; FAILING HUMAN MYOCARDIUM; CARDIOGENIC-SHOCK; HYPERINSULINAEMIA/EUGLYCAEMIA THERAPY; HYPERINSULINEMIC EUGLYCEMIA; INTENTIONAL OVERDOSE; ANESTHETIZED CANINE; ANTAGONIST OVERDOSE; INTRAVENOUS CALCIUM; VERAPAMIL TOXICITY; CARDIAC-ARREST;
D O I
10.3109/15563650.2011.582471
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Introduction. High-dose insulin therapy, along with glucose supplementation, has emerged as an effective treatment for severe beta-blocker and calcium channel-blocker poisoning. We review the experimental data and clinical experience that suggests high-dose insulin is superior to conventional therapies for these poisonings. Presentation and general management. Hypotension, bradycardia, decreased systemic vascular resistance (SVR), and cardiogenic shock are characteristic features of beta-blocker and calcium-channel blocker poisoning. Initial treatment is primarily supportive and includes saline fluid resuscitation which is essential to correct vasodilation and low cardiac filling pressures. Conventional therapies such as atropine, glucagon and calcium often fail to improve hemodynamic status in severely poisoned patients. Catecholamines can increase blood pressure and heart rate, but they also increase SVR which may result in decreases in cardiac output and perfusion of vascular beds. The increased myocardial oxygen demand that results from catecholamines and vasopressors may be deleterious in the setting of hypotension and decreased coronary perfusion. Methods. The Medline, Embase, Toxnet, and Google Scholar databases were searched for the years 1975-2010 using the terms: high-dose insulin, hyperinsulinemia-euglycemia, beta-blocker, calcium-channel blocker, toxicology, poisoning, antidote, toxin-induced cardiovascular shock, and overdose. In addition, a manual search of the Abstracts of the North American Congress of Clinical Toxicology and the Congress of the European Association of Poisons Centres and Clinical Toxicologists published in Clinical Toxicology for the years 1996-2010 was undertaken. These searches identified 485 articles of which 72 were considered relevant. Mechanisms of high-dose insulin benefit. There are three main mechanisms of benefit: increased inotropy, increased intracellular glucose transport, and vascular dilatation. Efficacy of high-dose insulin. Animal models have shown high-dose insulin to be superior to calcium salts, glucagon, epinephrine, and vasopressin in terms of survival. Currently, there are no published controlled clinical trials in humans, but a review of case reports and case series supports the use of high-dose insulin as an initial therapy. High-dose insulin treatment protocols. When first introduced, insulin doses were cautiously initiated at 0.5 U/kg bolus followed by a 0.5-1 U/kg/h continuous infusion due to concern for hypoglycemia and electrolyte imbalances. With increasing clinical experience and the publication of animal studies, high-dose insulin dosing recommendations have been increased to 1 U/kg insulin bolus followed by a 1-10 U/kg/h continuous infusion. Although the optimal regimen is still to be determined, bolus doses up to 10 U/kg and continuous infusions as high as 22 U/kg/h have been administered with good outcomes and minimal adverse events. Adverse effects of high-dose insulin. The major anticipated adverse events associated with high-dose insulin are hypoglycemia and hypokalemia. Glucose concentrations must be monitored regularly and supplementation of glucose will likely be required throughout therapy and for up to 24 h after discontinuation of high-dose insulin. The change in serum potassium concentrations reflects a shifting of potassium from the extracellular to intracellular space rather than a decrease in total body stores. Conclusions. While more clinical data are needed, animal studies and human case reports demonstrate that high-dose insulin (1-10 U/kg/hour) is a superior treatment in terms of safety and survival in both beta-blocker and calcium-channel blocker poisoning. High-dose insulin should be considered initial therapy in these poisonings.
引用
收藏
页码:277 / 283
页数:7
相关论文
共 50 条
  • [1] High dose insulin for beta-blocker and calcium channel-blocker poisoning
    Cole, Jon B.
    Arens, Ann M.
    Laes, JoAn R.
    Klein, Lauren R.
    Bangh, Stacey A.
    Olives, Travis D.
    AMERICAN JOURNAL OF EMERGENCY MEDICINE, 2018, 36 (10): : 1817 - 1824
  • [2] β-Blocker and Calcium Channel Blocker Poisoning: High-Dose Insulin/Glucose Therapy
    Bartlett, Dana
    CRITICAL CARE NURSE, 2016, 36 (02) : 45 - 50
  • [3] High-dose insulin infusion in calcium channel and beta-blocker overdose
    Sherwin, S.
    MacDonald, J.
    ANAESTHESIA, 2019, 74 : 64 - 64
  • [4] Volume overload from institution of high dose insulin therapy for calcium channel-blocker poisoning
    King, Andrew
    Menke, Nathan B.
    Abesamis, Michael G.
    CLINICAL TOXICOLOGY, 2013, 51 (07) : 661 - 661
  • [5] The Use of High-dose Insulin Infusion and Lipid Emulsion Therapy in Concurrent Beta-blocker and Calcium Channel Blocker Overdose
    Lashari, Bilal H.
    Minalyan, Artem
    Khan, Waqas
    Naglak, Mary
    Ward, William
    CUREUS, 2018, 10 (11):
  • [6] High-dose insulin for calcium channel blocker and beta-blocker poisoning in children: 20 years of experience from a regional poison center
    Stevens, Devon
    Montageau, Abby
    Olives, Travis
    Lee, Samantha
    Knack, Sarah
    Cole, Jon
    CLINICAL TOXICOLOGY, 2023, 61 : 159 - 159
  • [7] A Comparison of High Dose Insulin Therapy and Conventional Inotropic Therapy in Calcium Channel Blocker And/or Beta-Blocker Toxic Ingestions
    Musselman, M.
    Farber, M.
    Smolinske, S.
    Aaron, C.
    Saely, S.
    ANNALS OF EMERGENCY MEDICINE, 2011, 58 (04) : S325 - S325
  • [8] High-dose insulin for beta blocker and calcium channel blocker poisoning: 17 years of experience from a single poison center
    Cole, Jon
    Arens, Ann
    Laes, Joan
    Klein, Lauren
    Bangh, Stacey
    Olives, Travis
    CLINICAL TOXICOLOGY, 2017, 55 (07) : 719 - 720
  • [9] THE USE OF HIGH DOSE INSULIN EUGLYCEMIA THERAPY IN CALCIUM CHANNEL BLOCKER AND BETA BLOCKER OVERDOSE
    Qureshi, Mohammed
    Catalasan, Gerardo
    JOURNAL OF GENERAL INTERNAL MEDICINE, 2016, 31 : S760 - S761
  • [10] High-dose insulin therapy for calcium-channel blocker overdose
    Shepherd, G
    Klein-Schwartz, W
    ANNALS OF PHARMACOTHERAPY, 2005, 39 (05) : 923 - 930