Application of similarity theory in modeling the output characteristics of proton exchange membrane fuel cell

被引:10
|
作者
Bai, Fan [1 ]
Lei, Le [1 ]
Zhang, Zhuo [1 ]
Li, Hailong [2 ]
Yan, Jinyue [2 ]
Chen, Li [1 ]
Dai, Yan-Jun [1 ]
Chen, Lei [1 ]
Tao, Wen-Quan [1 ]
机构
[1] Xi An Jiao Tong Univ, Key Lab Thermofluid Sci & Engn MOE, Xian 710049, Shaanxi, Peoples R China
[2] Malardalen Univ, Sch Sustainable Dev Soc & Technol, SE-72123 Vastras, Sweden
基金
中国国家自然科学基金;
关键词
Proton exchange membrane fuel cell; Similarity analysis; Dimensionless polarization curve; Sensibility analysis; PARAMETER SENSITIVITY EXAMINATION; OXYGEN-TRANSPORT RESISTANCE; IN-SITU MEASUREMENTS; MATHEMATICAL-MODEL; DROPLET DYNAMICS; AIR CHANNEL; WATER; SIMULATION; FLOW; PEMFC;
D O I
10.1016/j.ijhydene.2021.08.205
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Proton Exchange Membrane Fuel Cell (PEMFC) has attracted widespread interest. In the present work, similarity analysis is adopted for a three-dimensional single-phase isothermal model of PEMFC to derive similarity criteria. Seven kinds of input criteria (Pi(1) similar to Pi(7)) are obtained, relevant to the fluid flow, pressure drop, flow resistance in a porous medium, activity loss, diffusion mass transfer, convective mass transfer and ohmic loss in PEMFC respectively. Dimensionless voltage and dimensionless current density are defined as two output criteria. Numerical verifications show that if the seven criteria keep their individual values with their components vary in a wide range, the dimensionless polarization curves keep the same with a deviation about 1%, showing the validity and feasibility of the present analysis. From the effect on the dimensionless polarization curve, sensibility analysis shows that the seven criteria can be divided into three categories: strong (Pi(4) and Pi(7), -94.9% similar to +349.2%), mild to minor (Pi(5) and Pi(6), -4.5% similar to +5.0%), and negligible (Pi(1), Pi(2) and Pi(3), -1.2% similar to +1.1%). The similarity analysis approach can greatly save computation time in modeling the output characteristics of PEMFC. (C) 2021 Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.
引用
收藏
页码:36940 / 36953
页数:14
相关论文
共 50 条
  • [1] Mathematic Modeling and Characteristics Analysis of a Proton Exchange Membrane Fuel Cell
    Chen, Hung-Cheng
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2012, 7 (02) : 132 - 137
  • [2] Dynamic Control of Electric Output Characteristics of Proton Exchange Membrane Fuel Cell System
    刘呈则
    朱新坚
    Advances in Manufacturing, 2005, (03) : 261 - 267
  • [3] A REVIEW ON MODELING OF PROTON EXCHANGE MEMBRANE FUEL CELL
    Hamdollahi, Sahra
    Jun, Luo
    CHEMICAL INDUSTRY & CHEMICAL ENGINEERING QUARTERLY, 2023, 29 (01) : 61 - 74
  • [4] Modeling and simulation of proton exchange membrane fuel cell systems
    Beicha, Abdellah
    JOURNAL OF POWER SOURCES, 2012, 205 : 335 - 339
  • [5] Modeling of Flow Distribution in Proton Exchange Membrane Fuel Cell
    Rizvandi, Omid Babaie
    Yesilyurt, Serhat
    PROCEEDINGS OF THE ASME 16TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS, AND MINICHANNELS, 2018, 2016,
  • [6] Proton Exchange Membrane Fuel Cell Lumped Modeling and Simulation
    Jia, Qiuhong
    Han, Ming
    Liao, Linqing
    Xiao, Yan
    MATERIAL SCIENCE AND ENGINEERING TECHNOLOGY, 2012, 462 : 52 - +
  • [7] Neural Network Modeling of Proton Exchange Membrane Fuel Cell
    Puranik, Sachin V.
    Keyhani, Ali
    Khorrami, Farshad
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2010, 25 (02) : 474 - 483
  • [8] Proton exchange membrane fuel cell hybrid modeling research
    College of Electromechanical Engineering, Henan University of Science and Technology, Luoyang 471003, China
    不详
    Xitong Fangzhen Xuebao, 2007, 24 (5617-5619+5623):
  • [9] Dynamic characteristics of the proton exchange membrane fuel cell module
    Cieslinski, Janusz T.
    Kaczmarczyk, Tomasz Z.
    Dawidowicz, Bartosz
    ARCHIVES OF THERMODYNAMICS, 2018, 39 (04) : 125 - 140
  • [10] Proton exchange membrane development and processing for fuel cell application
    Bebin, Philippe
    Galiano, Herve
    THERMEC 2006, PTS 1-5, 2007, 539-543 : 1327 - +