Solitary, explosive, and periodic solutions of the quantum Zakharov-Kuznetsov equation and its transverse instability

被引:112
|
作者
Moslem, W. M. [1 ,3 ]
Ali, S. [1 ,4 ]
Shukla, P. K. [1 ,5 ,6 ,7 ,8 ,9 ,10 ]
Tang, X. Y. [1 ,11 ]
Rowlands, G. [2 ]
机构
[1] Ruhr Univ Bochum, Fak Phys & Astron, Inst Theoret Phys 4, D-44780 Bochum, Germany
[2] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[3] Suez Canal Univ, Dept Phys, Fac Ed, Port Said, Egypt
[4] Govt Coll Univ, Dept Phys, Lahore 54000, Pakistan
[5] Univ KwaZulu Natal, Sch Phys, Durban 4000, South Africa
[6] Max Planck Inst Extraterrest Phys, D-45741 Garching, Germany
[7] Umea Univ, Dept Phys, Ctr Nonlinear Phys, Umea 90187, Sweden
[8] Rutherford Appleton Lab, CCLRC Ctr Fundament Phys, Chilton, Didcot OX11 0QX, Oxon, England
[9] Univ Strathclyde, SUPA Dept Phys, Glasgow G4 0NG, Scotland
[10] Univ Tecn Lisboa, Inst Sup Tecn, GoLP Ctr Fis Plasmas, Lisbon 1049, Portugal
[11] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200240, Peoples R China
关键词
D O I
10.1063/1.2757612
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
By employing the quantum hydrodynamic model and the reductive perturbation technique, a quantum Zakharov-Kuznetsov (QZK) equation is derived for finite but small amplitude ion-acoustic waves in a quantum magnetoplasma. The extended Conte's truncation method is used to obtain the solitary, explosive, and periodic solutions of the QZK equation. Furthermore, the stability of the solitary wave solution of the QZK equation is investigated by using the small-k perturbation expansion method. (C) 2007 American Institute of Physics.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] ON THE PERIODIC ZAKHAROV-KUZNETSOV EQUATION
    Linares, Felipe
    Panthee, Mahendra
    Robert, Tristan
    Tzvetkov, Nikolay
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (06) : 3521 - 3533
  • [2] New spiky and explosive solitary wave solutions for further modified Zakharov-Kuznetsov equation
    Naranmandula
    Wang, KX
    [J]. PHYSICS LETTERS A, 2005, 336 (2-3) : 112 - 116
  • [3] The Transverse Instability of Periodic Waves in Zakharov-Kuznetsov Type Equations
    Johnson, Mathew A.
    [J]. STUDIES IN APPLIED MATHEMATICS, 2010, 124 (04) : 323 - 345
  • [4] Solitons and other solutions to the quantum Zakharov-Kuznetsov equation
    Ghodrat Ebadi
    Aida Mojaver
    Daniela Milovic
    Stephen Johnson
    Anjan Biswas
    [J]. Astrophysics and Space Science, 2012, 341 : 507 - 513
  • [5] Solitary waves solutions and local conserved vectors for extended quantum Zakharov-Kuznetsov equation
    Humbu, I.
    Muatjetjeja, B.
    Motsumi, T. G.
    Adem, A. R.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (09):
  • [6] Peakons and new exact solitary wave solutions of extended quantum Zakharov-Kuznetsov equation
    Zhang, Ben-gong
    Li, Weibo
    Li, Xiangpeng
    [J]. PHYSICS OF PLASMAS, 2017, 24 (06)
  • [7] Solitons and other solutions to the quantum Zakharov-Kuznetsov equation
    Ebadi, Ghodrat
    Mojaver, Aida
    Milovic, Daniela
    Johnson, Stephen
    Biswas, Anjan
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2012, 341 (02) : 507 - 513
  • [8] New exact solitary wave and multiple soliton solutions of quantum Zakharov-Kuznetsov equation
    Zhang, Ben-gong
    Liu, Zheng-rong
    Xiao, Qing
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (01) : 392 - 402
  • [9] Generalized solitary and periodic wave solutions to a (2+1)-dimensional Zakharov-Kuznetsov equation
    Aslan, Ismail
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (04) : 1421 - 1429
  • [10] New exact periodic elliptic wave solutions for extended quantum Zakharov-Kuznetsov equation
    Raza, Nauman
    Abdullah, Muhammad
    Butt, Asma Rashid
    Murtaza, Isma Ghulam
    Sial, Sultan
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (04)