Null Curve Evolution in Four-Dimensional Pseudo-Euclidean Spaces

被引:1
|
作者
del Amor, Jose [1 ]
Gimenez, Angel [2 ]
Lucas, Pascual [1 ]
机构
[1] Univ Murcia, Dept Matemat, Campus Espinardo, E-30100 Murcia, Spain
[2] Univ Miguel Hernandez Elche, Ctr Invest Operat, Ave Univ S-N, Alicante 03202, Spain
关键词
LIE-ALGEBRA STRUCTURE; INTEGRABLE SYSTEMS; EQUATIONS; CLASSIFICATION; PARTICLES; GEOMETRY;
D O I
10.1155/2016/5725234
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define a Lie bracket on a certain set of local vector fields along a null curve in a 4-dimensional semi-Riemannian space form. This Lie bracket will be employed to study integrability properties of evolution equations for null curves in a pseudo-Euclidean space. In particular, a geometric recursion operator generating infinitely many local symmetries for the null localized induction equation is provided.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Submanifolds in five-dimensional pseudo-Euclidean spaces and four-dimensional FRW universes
    Gulamov, Igor E.
    Smolyakov, Mikhail N.
    GENERAL RELATIVITY AND GRAVITATION, 2012, 44 (03) : 703 - 710
  • [2] Submanifolds in five-dimensional pseudo-Euclidean spaces and four-dimensional FRW universes
    Igor E. Gulamov
    Mikhail N. Smolyakov
    General Relativity and Gravitation, 2012, 44 : 703 - 710
  • [3] Quasi-minimal rotational surfaces in pseudo-Euclidean four-dimensional space
    Ganchev, Georgi
    Milousheva, Velichka
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (10): : 1586 - 1601
  • [4] Actions on the Four-Dimensional Pseudo-Euclidean Space R2,2 with a Three-Dimensional Orbit
    Ahmadi, P.
    Safari, S.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2022, 18 (03) : 303 - 331
  • [5] MAPPINGS OF DOMAINS OF PSEUDO-EUCLIDEAN SPACES
    ALEXANDROV, AD
    DOKLADY AKADEMII NAUK SSSR, 1977, 233 (02): : 265 - 268
  • [6] On invariants of null curves in the pseudo-Euclidean geometry
    Peksen, Omer
    Khadjiev, Djavvat
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 : S183 - S187
  • [7] CONVEX SURFACES IN PSEUDO-EUCLIDEAN SPACES
    GUREVICH, VL
    DOKLADY AKADEMII NAUK SSSR, 1978, 240 (03): : 512 - 514
  • [8] Heisenberg model in pseudo-Euclidean spaces
    Božidar Jovanović
    Regular and Chaotic Dynamics, 2014, 19 : 245 - 250
  • [9] Heisenberg model in pseudo-Euclidean spaces
    Jovanovic, Bozidar
    REGULAR & CHAOTIC DYNAMICS, 2014, 19 (02): : 245 - 250
  • [10] Butterfly Lines' Curve in pseudo-Euclidean Plane
    Jurkin, E.
    Sliepcevic, A.
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2013, 17 (515): : 195 - 201