Non-perturbative renormalization constants and light quark masses

被引:5
|
作者
Becirevic, D
Gimenez, V
Lubicz, V
Martinelli, G
Papinutto, M
Reyes, J
Tarantino, C
机构
[1] INFN Roma 1, I-00185 Rome, Italy
[2] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain
[3] Univ Valencia, IFIC, E-46100 Valencia, Spain
[4] Univ Roma Tre, Dipartimento Fis, I-00146 Rome, Italy
[5] INFN Roma III, I-00146 Rome, Italy
[6] DESY, Theory Grp, D-22607 Hamburg, Germany
关键词
D O I
10.1016/S0920-5632(03)01580-9
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present the results of an extensive non-perturbative calculation of the renormalization constants of bilinear quark operators,for the non-perturbatively O(a)-improved Wilson action. The results are obtained at four values of the lattice coupling, by using the RI/MOM and the Ward identities methods. A new non-perturbative,renormalization technique, which is based on the study of the lattice correlation functions at short distance in x-space, is also numerically investigated. We then use our non-perturbative determination of the quark mass renormalization constants to compute the values of the strange and the average up/down quark masses. After performing an extrapolation to the continuum limit, we obtain m<((MS)(s))over bar>ms(2 GeV) = (106 +/- 2 +/- 8) MeV and m<((MS)(l))over bar>(2 GeV) = (4.4 +/- 0.1 +/- 0.4) MeV.
引用
收藏
页码:442 / 445
页数:4
相关论文
共 50 条
  • [31] Non-perturbative renormalization of lattice QCD.
    Rossi, GC
    NUCLEAR PHYSICS B, 1997, : 3 - 15
  • [32] Non-perturbative Renormalization in Truncated Yukawa Model
    V. A. Karmanov
    Few-Body Systems, 2016, 57 : 473 - 478
  • [33] Non-perturbative renormalization in lattice field theory
    Sint, S
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 94 : 79 - 94
  • [34] Light hadron spectrum, renormalization constants and light quark masses with two dynamical fermions
    Becirevic, D
    Boucaud, P
    Giménez, V
    Lubicz, V
    Martinelli, G
    Mescia, F
    Simula, S
    Tarantino, C
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2005, 140 : 246 - 248
  • [35] The non-perturbative renormalization group in the ordered phase
    Caillol, Jean-Michel
    NUCLEAR PHYSICS B, 2012, 855 (03) : 854 - 884
  • [36] Non-perturbative improvement and renormalization of lattice operators
    Capitani, S
    Gockeler, M
    Horsley, R
    Oelrich, H
    Perlt, H
    Pleiter, D
    Rakow, PEL
    Schierholz, G
    Schiller, A
    Stephenson, P
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 63 : 871 - 873
  • [37] Operator product expansion and non-perturbative renormalization
    Caracciolo, S
    Montanari, A
    Pelissetto, A
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1999, 73 : 273 - 275
  • [38] Non-perturbative renormalization for a renormalization group improved gauge action
    Aoki, S
    Burkhalter, R
    Fukugita, M
    Hashimoto, S
    Ide, K
    Ishizuka, N
    Iwasaki, Y
    Kanaya, K
    Kaneko, T
    Kuramashi, Y
    Lesk, V
    Okawa, M
    Taniguchi, Y
    Ukawa, A
    Yushié, T
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 : 780 - 782
  • [39] Non-perturbative Renormalization in Truncated Yukawa Model
    Karmanov, V. A.
    FEW-BODY SYSTEMS, 2016, 57 (06) : 473 - 478
  • [40] Improved non-perturbative renormalization without cNGI
    Sharpe, SR
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 : 817 - 819