Circularity of finite groups without fixed points

被引:2
|
作者
Beidar, KI [1 ]
Ke, WF
Kiechle, H
机构
[1] Natl Cheng Kung Univ, Dept Math, Tainan 701, Taiwan
[2] Univ Hamburg, Math Seminar, D-20146 Hamburg, Germany
来源
MONATSHEFTE FUR MATHEMATIK | 2005年 / 144卷 / 04期
关键词
circular; Ferrero pair; metacyclic group; skewfield;
D O I
10.1007/s00605-004-0268-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Phi be a fixed point free group given by the presentation < A, B | A(mu) = 1, B-nu = A(t), BAB(-1) = A(rho)> where p and p are relative prime numbers, t = mu/s and s = gcd(rho - 1, mu), and v is the order of p modulo mu. We prove that if (1) nu = 2, and (2) Phi is embeddable into the multiplicative group of some skew field, then Phi is circular. This means that there is some additive group N on which Phi acts fixed point freely, and |(Phi (a) + b) boolean AND (Phi (c) + d) | <= 2 whenever a, b, c, d is an element of N, a not equal 0 not equal c, are such that Phi(a) + b not equal Phi(c) + d.
引用
收藏
页码:265 / 273
页数:9
相关论文
共 50 条