New carbon-based thermal stability improvement technique for NiPtSi used in CMOS technology

被引:9
|
作者
Ortolland, C. [1 ]
Togo, M. [1 ]
Rosseel, E. [1 ]
Mertens, S. [1 ]
Kittl, J. [1 ]
Absil, P. P. [1 ]
Lauwers, A. [1 ]
Hoffmann, T. [1 ]
机构
[1] IMEC, B-3001 Louvain, Belgium
关键词
NiPt-silicide; Thermal stability; Carbon; CMOS;
D O I
10.1016/j.mee.2010.07.008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new carbon-based thermal stability improvement technique is proposed for nickel suicide. Carbon implantation is well known to improve the thermal stability of Ni-based silicides, but its process window is small. An experiment has been performed to identify and introduce new process steps which improve the thermal stability and which can be integrated into a CMOS technology platform without a significant cost increase. No yield issues have been observed up to 700 degrees C 30 min post-silicidation thermal budget even for the narrowest silicided silicon lines. NiPtSi encroachment, which is one of the main yield killers for Sub-65 nm technologies, has not been seen. The device scalability is not affected and a similar performance has been achieved with an additional post-silicidation thermal budget. Through in-depth understanding of this approach, new integration schemes like for instance a gate-last process flow can be envisioned. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:578 / 582
页数:5
相关论文
共 50 条
  • [1] Stability improvement of carbon-based electrodes in aqueous electrocapacitive devices
    Li, Jiayuan
    Wang, Ao
    Tan, Chang
    Wu, Dichao
    Fan, Mengmeng
    Sun, Kang
    Jiang, Jianchun
    Boles, Steven
    Li, Bei
    Liu, Junli
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (05) : 3111 - 3121
  • [2] Silicide Yield Improvement with NiPtSi Formation by Laser Anneal for Advanced Low Power Platform CMOS Technology
    Ortolland, C.
    Rosseel, E.
    Horiguchi, N.
    Kerner, C.
    Mertens, S.
    Kittl, J.
    Verleysen, E.
    Bender, H.
    Vandervost, W.
    Lauwers, A.
    Absil, P. P.
    Biesemans, S.
    Muthukrishnan, S.
    Srinivasan, S.
    Mayur, A. J.
    Schreutelkamp, R.
    Hoffmann, T.
    2009 IEEE INTERNATIONAL ELECTRON DEVICES MEETING, 2009, : 19 - +
  • [3] Adhesion improvement of carbon-based coatings through a high ionization deposition technique
    Broitman, E.
    Hultman, L.
    14TH LATIN AMERICAN WORKSHOP ON PLASMA PHYSICS (LAWPP 2011), 2012, 370
  • [4] Research Progress on Thermal Stability of Diamond-like Carbon-based Coatings
    Tang, Ziyan
    Wei, Jing
    Chen, Rende
    Cui, Li
    Guo, Peng
    Wang, Aiying
    Surface Technology, 2024, 53 (20): : 1 - 18
  • [5] THERMAL CONDUCTIVITY OF CARBON-BASED MATERIALS
    Kutuzov, S. V.
    Vasil'chenko, G. N.
    Chirka, T. V.
    Panov, E. N.
    REFRACTORIES AND INDUSTRIAL CERAMICS, 2013, 54 (01) : 39 - 43
  • [6] Thermal conductivity of carbon-based materials
    Kutuzov S.V.
    Vasil'Chenko G.N.
    Chirka T.V.
    Panov E.N.
    Refractories and Industrial Ceramics, 2013, 54 (1) : 39 - 43
  • [7] Thermal properties of carbon-based materials
    Watkins, Evan
    Parekh, Mihir
    Bhattacharya, Sriparna
    Rao, Rahul
    Rao, Apparao M.
    MATERIALS CHEMISTRY AND PHYSICS, 2024, 322
  • [8] Carbon-based Nanomaterials for Neural Electrode Technology
    Liu, Yang
    Duan, Xiaojie
    ACTA PHYSICO-CHIMICA SINICA, 2020, 36 (12) : 1 - 13
  • [9] Carbon-Based Materials Used for Perovskite Solar Cells
    Wu, Zhongwei
    Song, Tao
    Sun, Baoquan
    CHEMNANOMAT, 2017, 3 (02): : 75 - 88
  • [10] Improvement in Electrotransfection of Cells Using Carbon-Based Electrodes
    Chang, Chun-Chi
    Mao, Mao
    Liu, Yang
    Wu, Mina
    Tuan Vo-Dinh
    Yuan, Fan
    CELLULAR AND MOLECULAR BIOENGINEERING, 2016, 9 (04) : 538 - 545