A 3D petrographic analysis for concrete freeze-thaw protection

被引:12
|
作者
Song, Yu [1 ]
Damiani, Robbie M. [1 ]
Shen, Chuanyue [1 ]
Castaneda, Daniel I. [2 ]
Lange, David A. [3 ]
机构
[1] Univ Illinois, Dept Civil & Environm Engn, 2145 Newmark Civil Engn Bldg,205 N Mathews, Urbana, IL 61801 USA
[2] James Madison Univ, Dept Engn, 801 Carrier Dr,MSC 4113, Harrisonburg, VA 22807 USA
[3] Univ Illinois, Dept Civil & Environm Engn, 2129b Newmark Civil Engn Bldg,205 N Mathews, Urbana, IL 61801 USA
关键词
Petrography; Freeze-thaw; Spacing factor; Image analysis; Unfolding; Air void analysis; 3D modeling; PPV analysis; Paste protection; AIR VOID ANALYSIS; PASTE VOLUME CONCEPT; HARDENED CONCRETE; FROST-RESISTANCE; ENTRAINMENT; MECHANISMS;
D O I
10.1016/j.cemconres.2019.105952
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Petrographic analysis is routinely implemented to measure air void parameters for predicting freeze-thaw durability of concrete. The 1D or 2D measurements obtained from polished concrete sections are used to infer 3D protection of the paste. Since an arbitrary point in a section view may be partially protected by air voids that are not intersected, a stereological model is proposed to consider both intersected and un-intersected voids. The model is tested with a group of concrete mixtures with varying air entrainment, mix proportion, and aggregate type. As compared with the 2D analysis, this 3D analysis indicates a higher percent of cement paste being protected. When equating the protection range to Powers' spacing factor, it is found that roughly 98% of paste is protected in 3D. Findings in this study also align with results obtained by other authors using numerical simulation and computed tomography. This model offers a realistic concrete freeze-thaw assessment.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] 3D mesoscale analysis of concrete containing defect damages during different freeze-thaw cycles
    Miao, Haibin
    Guo, Chao
    Lu, Zhengran
    Chen, Zhihua
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 358
  • [2] THERMAL PROTECTION OF CONCRETE DAMS SUBJECTED TO FREEZE-THAW CYCLES
    LEGER, P
    COTE, M
    TINAWI, R
    CANADIAN JOURNAL OF CIVIL ENGINEERING, 1995, 22 (03) : 588 - 602
  • [3] Analysis of Freeze-Thaw Damage of Lightweight Aggregate Concrete
    Mao, Jize
    Ayuta, Koichi
    Qi, Hui
    Liu, Zongmin
    ADVANCES IN FRACTURE AND DAMAGE MECHANICS VIII, 2010, 417-418 : 829 - +
  • [4] Correlation between Water Freeze-Thaw Resistance and Salt Freeze-Thaw Resistance of Concrete
    Xu G.
    Gong C.
    Liu J.
    Gao D.
    Zeng Z.
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2020, 23 (03): : 552 - 556and562
  • [5] Freeze-thaw Resistance of Concrete in Seawater
    SHUI Z HXU H GZHAN B JSchool of Materials Science and EngineeringWuhan University of TechnologyWuhan ChinaTransportation Bureau of Xinganmeng Inner MongoliaUlanhot China
    武汉理工大学学报, 2010, 32 (17) : 108 - 111
  • [6] FREEZE-THAW TESTS OF CONCRETE IN SEAWATER
    MOUKWA, M
    AITCIN, PC
    PIGEON, M
    HORNAIN, H
    ACI MATERIALS JOURNAL, 1989, 86 (04) : 360 - 366
  • [7] Spatially resolved analysis of the progression of freeze-thaw damage in concrete
    Kind, Vanessa Mercedes
    Werneck, Chiara
    Müller, Matthias
    Unbehau, Sophie
    Ludwig, Horst-Michael
    Dehn, Frank
    ce/papers, 2023, 6 (06) : 1214 - 1222
  • [8] Damage analysis of freeze-thaw processes in hydraulic structure concrete
    Gong Yaqi
    Cui Jianghua
    Su Haidong
    Shan Liang
    TRENDS IN CIVIL ENGINEERING, PTS 1-4, 2012, 446-449 : 2681 - 2684
  • [9] Analysis on effects of freeze-thaw cycle on mechanical properties of concrete
    Youzhen, Wang, 1600, Journal of Chemical and Pharmaceutical Research, 3/668 Malviya Nagar, Jaipur, Rajasthan, India (06):
  • [10] Petrographic analysis of in-service cementitious mortar subject to freeze-thaw cycles and deicers
    Qiao, Chunyu
    Chen, Xu
    Suraneni, Prannoy
    Weiss, W. Jason
    Rothstein, David
    CEMENT & CONCRETE COMPOSITES, 2021, 122