Semiclassical Loop Quantum Black Hole

被引:114
|
作者
Modesto, Leonardo [1 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
关键词
Black hole; Loop quantum gravity; SPHERICALLY SYMMETRICAL GRAVITY; QUANTIZATION; EVAPORATION; VERTEX;
D O I
10.1007/s10773-010-0346-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we improve the semiclassical analysis of loop quantum black hole (LQBH) in the conservative approach of a constant polymeric parameter. In particular we focus our attention on the space-time structure. We introduce a very simple modification of the spherically symmetric Hamiltonian constraint in terms of holonomies. The new quantum constraint reduces to the classical constraint when the polymeric parameter delta goes to zero. Using this modification we obtain a large class of semiclassical solutions parametrized by a generic function sigma(delta). We find that only a particular choice of this function reproduces the Schwarzschild black hole solution outside the black hole with the correct asymptotic flat limit. In r=0 the semiclassical metric is regular and the Kretschmann invariant has a maximum peaked at r (max) ae l (P) . The radial position of the peak does not depend on the black hole mass and the polymeric parameter delta. The semiclassical solution is very similar to the Reissner-Nordstrom metric. We construct the Carter-Penrose diagrams explicitly, giving a causal description of the space-time and its maximal extension. The LQBH metric interpolates between two asymptotically flat regions, the r -> a region and the r -> 0 region. We study the thermodynamics of the semiclassical solution. The temperature, entropy and the evaporation process are regular and could be defined independently from the polymeric parameter delta. We study the particular metric when the polymeric parameter goes towards to zero. This metric is regular in r=0 and has only one event horizon in r=2m. The radial position of the Kretschmann invariant maximum depends only on l (P) . As such the polymeric parameter delta does not play any role in the black hole singularity resolution. The thermodynamics is the same.
引用
收藏
页码:1649 / 1683
页数:35
相关论文
共 50 条
  • [1] Semiclassical Loop Quantum Black Hole
    Leonardo Modesto
    [J]. International Journal of Theoretical Physics, 2010, 49 : 1649 - 1683
  • [3] Loop quantum black hole
    Modesto, Leonardo
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (18) : 5587 - 5601
  • [4] Loop Quantum Black Hole
    Zhang, Xiangdong
    [J]. UNIVERSE, 2023, 9 (07)
  • [5] Complete semiclassical treatment of the quantum black hole problem
    Harms, B
    Leblanc, Y
    [J]. ANNALS OF PHYSICS, 1995, 244 (02) : 262 - 271
  • [6] Loop quantum gravity and black hole physics
    Rovelli, C
    [J]. HELVETICA PHYSICA ACTA, 1996, 69 (04): : 582 - 611
  • [7] Black hole entropy in loop quantum gravity
    Agullo, Ivan
    Fernando Barbero, J. G.
    Borja, Enrique F.
    Diaz-Polo, Jacobo
    Villasenor, Eduardo J. S.
    [J]. LOOPS 11: NON-PERTURBATIVE / BACKGROUND INDEPENDENT QUANTUM GRAVITY, 2012, 360
  • [8] Quantum dynamics of the black hole interior in loop quantum cosmology
    Sartini, Francesco
    Geiller, Marc
    [J]. PHYSICAL REVIEW D, 2021, 103 (06)
  • [9] Phenomenological loop quantum geometry of the Schwarzschild black hole
    Chiou, Dah-Wei
    [J]. PHYSICAL REVIEW D, 2008, 78 (06):
  • [10] Chiral Loop Quantum Supergravity and Black Hole Entropy
    Eder, Konstantin
    Sahlmann, Hanno
    [J]. UNIVERSE, 2023, 9 (07)