A MODULAR FUNCTOR FROM STATE SUMS FOR FINITE TENSOR CATEGORIES AND THEIR BIMODULES

被引:0
|
作者
Fuchs, Jurgen [1 ]
Schaumann, Gregor
Schweigert, Christoph
机构
[1] Karlstads Univ, Teoret Fys, Univ Gatan 21, S-65188 Karlstad, Sweden
来源
基金
瑞典研究理事会;
关键词
modular functor; state-sum construction; finite tensor category; monoidal bicategory; mapping class group; factorization; topological defect; HOPF-ALGEBRAS; INVARIANTS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a modular functor which takes its values in the monoidal bicategory of finite categories, left exact functors and natural transformations. The modular functor is defined on bordisms that are 2-framed. Accordingly we do not need to require that the finite categories appearing in our construction are semisimple, nor that the finite tensor categories that are assigned to two-dimensional strata are endowed with a pivotal structure. Our prescription can be understood as a state-sum construction. The state-sum variables are assigned to one-dimensional strata and take values in bimodule categories over finite tensor categories, whereby we also account for the presence of boundaries and defects. Our construction allows us to explicitly compute functors associated to surfaces and representations of mapping class groups acting on them.
引用
收藏
页码:436 / 594
页数:159
相关论文
共 50 条
  • [1] Motzkin algebras and the An tensor categories of bimodules
    Jones, Vaughan F. R.
    Yang, Jun
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (10)
  • [2] Bisets as Categories and Tensor Product of Induced Bimodules
    Bouc, Serge
    [J]. APPLIED CATEGORICAL STRUCTURES, 2010, 18 (05) : 517 - 521
  • [3] Amenable tensor categories and their realizations as AFD bimodules
    Hayashi, T
    Yamagami, S
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 172 (01) : 19 - 75
  • [4] C*-tensor categories and free product bimodules
    Yamagami, S
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 197 (02) : 323 - 346
  • [5] Bisets as Categories and Tensor Product of Induced Bimodules
    Serge Bouc
    [J]. Applied Categorical Structures, 2010, 18 : 517 - 521
  • [6] On the Frobenius functor for symmetric tensor categories in positive characteristic
    Etingof, Pavel
    Ostrik, Victor
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 773 : 165 - 198
  • [7] On Classification of Modular Tensor Categories
    Eric Rowell
    Richard Stong
    Zhenghan Wang
    [J]. Communications in Mathematical Physics, 2009, 292 : 343 - 389
  • [8] On Classification of Modular Tensor Categories
    Rowell, Eric
    Stong, Richard
    Wang, Zhenghan
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 292 (02) : 343 - 389
  • [9] MODULAR TRANSFORMATIONS FOR TENSOR CATEGORIES
    LYUBASHENKO, V
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 98 (03) : 279 - 327
  • [10] Higher Gauss sums of modular categories
    Ng, Siu-Hung
    Schopieray, Andrew
    Wang, Yilong
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2019, 25 (04):