Approximate Kalman-Bucy Filter for Continuous-Time Semi-Markov Jump Linear Systems

被引:14
|
作者
de Saporta, Benoite [1 ,2 ,3 ]
Costa, Eduardo F. [4 ]
机构
[1] Univ Montpellier, F-34095 Montpellier, France
[2] CNRS, IMAG, UMR 5149, F-34095 Montpellier, France
[3] Inria Bordeaux Sud Ouest, F-33400 Talence, France
[4] Univ Sao Paulo, Inst Ciencias Math Comp, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Filtering; optimal quantization; precomputations; Riccati equation; semi-Markov jump linear systems; STATE ESTIMATION;
D O I
10.1109/TAC.2015.2495578
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The aim of this paper is to propose a new numerical approximation of the Kalman-Bucy filter for semi-Markov jump linear systems. This approximation is based on the selection of typical trajectories of the driving semi-Markov chain of the process by using an optimal quantization technique. The main advantage of this approach is that it makes pre-computations possible. We derive a Lipschitz property for the solution of the Riccati equation and a general result on the convergence of perturbed solutions of semi-Markov switching Riccati equations when the perturbation comes from the driving semi-Markov chain. Based on these results, we prove the convergence of our approximation scheme in a general infinite countable state space framework and derive an error bound in terms of the quantization error and time discretization step. We employ the proposed filter in a magnetic levitation example with markovian failures and compare its performance with both the Kalman-Bucy filter and the Markovian linear minimum mean squares estimator.
引用
收藏
页码:2035 / 2048
页数:14
相关论文
共 50 条
  • [1] CONTINUOUS TIME KALMAN-BUCY FILTER
    VALADIER, M
    [J]. REVUE FRANCAISE D AUTOMATIQUE INFORMATIQUE RECHERCHE OPERATIONNELLE, 1972, 6 (NR2): : 9 - 22
  • [2] Consensus-based Distributed Kalman-Bucy Filter for Continuous-time Systems
    Wu, Jingbo
    Elser, Anja
    Zeng, Shen
    Allgoewer, Frank
    [J]. IFAC PAPERSONLINE, 2016, 49 (22): : 321 - 326
  • [3] Mean stability of continuous-time semi-Markov jump linear positive systems
    Ogura, Masaki
    Martin, Clyde F.
    [J]. 2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 3261 - 3266
  • [4] Robust Kalman filter of continuous-time Markov jump linear systems based on state estimation performance
    Xiao, Xiaobo
    Xi, Hongsheng
    Zhu, Jin
    Ji, Haibo
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2008, 39 (01) : 9 - 16
  • [5] Stability analysis and stabilization for nonlinear continuous-time descriptor semi-Markov jump systems
    Wang, Jimin
    Ma, Shuping
    Zhang, Chenghui
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 279 : 90 - 102
  • [6] Unscented Kalman-Bucy Filtering for Nonlinear Continuous-time Systems with Multiple Delayed Measurements
    Zhou, Yucheng
    Xu, Jiahe
    Jing, Yuanwei
    Dimirovski, Georgi M.
    [J]. 2010 AMERICAN CONTROL CONFERENCE, 2010, : 5302 - 5307
  • [7] Finite-Time H∞ Control of Nonlinear Continuous-Time Descriptor Semi-Markov Jump Systems
    Wang, Jimin
    Ma, Shuping
    Kulan, Zhumahan
    [J]. PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 1690 - 1695
  • [8] Finite-Time H∞ Filtering for Nonlinear Continuous-Time Singular Semi-Markov Jump Systems
    Wang, Jimin
    Ma, Shuping
    Zhang, Chenghui
    [J]. ASIAN JOURNAL OF CONTROL, 2019, 21 (02) : 1017 - 1027
  • [9] An ensemble Kalman-Bucy filter for continuous data assimilation
    Bergemann, Kay
    Reich, Sebastian
    [J]. METEOROLOGISCHE ZEITSCHRIFT, 2012, 21 (03) : 213 - 219
  • [10] Robust H∞ Control of Uncertain Nonlinear Continuous-Time Singular Semi-Markov Jump Systems
    Wang, Jimin
    Ma, Shuping
    Kulan, Zhumahan
    [J]. PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 2479 - 2484