Geostatistical analysis of Landsat-TM lossy compression images in a High Performance Computing environment

被引:1
|
作者
Pesquer, Lluis [1 ]
Cortes, Ana [2 ]
Serral, Ivette [1 ]
Pons, Xavier [3 ]
机构
[1] Univ Autonoma Barcelona, Ctr Ecol Res & Forestry Applicat, Edifici C, E-08193 Barcelona, Spain
[2] Univ Autonoma Barcelona, Comp Architecture & Operating Syst Dept, Barcelona, Spain
[3] Univ Autonoma Barcelona, Dept Geog, Barcelona, Spain
关键词
Geostatistics; lossy compression; remote sensing images; HPC; REMOTELY-SENSED IMAGES;
D O I
10.1117/12.896418
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The main goal of this study is to characterize the effects of lossy image compression procedures on the spatial patterns of remotely sensed images, as well as to test the performance of job distribution tools specifically designed for obtaining geostatistical parameters (variogram) in a High Performance Computing (HPC) environment. To this purpose, radiometrically and geometrically corrected Landsat-5 TM images from April, July, August and September 2006 were compressed using two different methods:Band-Independent Fixed-Rate (BIFR) and three-dimensional Discrete Wavelet Transform (3d-DWT) applied to the JPEG 2000 standard. For both methods, a wide range of compression ratios (2.5:1, 5:1, 10:1, 50:1, 100:1, 200:1 and 400:1, from soft to hard compression) were compared. Variogram analyses conclude that all compression ratios maintain the variogram shapes and that the higher ratios (more than 100:1) reduce variance in the sill parameter of about 5%. Moreover, the parallel solution in a distributed environment demonstrates that HPC offers a suitable scientific test bed for time demanding execution processes, as in geostatistical analyses of remote sensing images.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Lossy Compression of Landsat Multispectral Images
    Kozhemiakin, Ruslan
    Abramov, Sergey
    Lukin, Vladimir
    Djurovic, Blazo
    Djurovic, Igor
    Vozel, Benoit
    [J]. 2016 5TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2016, : 104 - 107
  • [2] SPECTRAL AND SPATIAL DECORRELATION OF LANDSAT-TM DATA FOR LOSSLESS COMPRESSION
    WANG, JF
    ZHANG, KH
    TANG, SW
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1995, 33 (05): : 1277 - 1285
  • [3] MULTIRESOLUTION ANALYSIS IN THE VISIBLE SPECTRUM OF LANDSAT-TM IMAGES THROUGH WAVELET TRANSFORM
    Cepeda, Marilyn
    Palacios, Ivan
    Tierra, Alfonso
    Kirby, Eduardo
    [J]. GEOGRAPHIA TECHNICA, 2018, 13 (01): : 20 - 29
  • [4] Determination of water quality parameters in Lake Constance using LANDSAT-TM images
    Schneider, K
    Bach, H
    Mauser, W
    [J]. REMOTE SENSING OF VEGETATION AND SEA, 1997, 2959 : 149 - 158
  • [5] Automatic mapping of large scale forest fires in Spain using Landsat-TM images
    Quintano, E
    Delgado, JA
    Fernández, A
    Illera, P
    [J]. REMOTE SENSING IN THE 21ST CENTURY: ECONOMIC AND ENVIRONMENTAL APPLICATIONS, 2000, : 357 - 361
  • [6] ANALYSIS OF LANDSAT TM IMAGES OF CHERNOBYL
    RICHTER, R
    LEHMANN, F
    HAYDN, R
    VOLK, P
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1986, 7 (12) : 1859 - 1867
  • [7] Reservoir trophic state evaluation using Landsat TM images and geostatistical simulation
    Cheng, KS
    Lei, TC
    Yeh, HC
    [J]. ACCURACY 2000, PROCEEDINGS, 2000, : 105 - 108
  • [8] Merging Landsat TM and SPOT-P images with geostatistical stochastic simulation
    Carvalho, J
    Delgado-García, J
    Caetano, H
    [J]. Geostatistics for Environmental Applications, Proceedings, 2005, : 379 - 390
  • [9] Analyzing dune dynamics at the dune-field scale based on multi-temporal analysis of Landsat-TM images
    Mohamed, Lhab N. L.
    Verstraeten, Gert
    [J]. REMOTE SENSING OF ENVIRONMENT, 2012, 119 : 105 - 117
  • [10] BLENDING OF TERRA-MODIS AND LANDSAT-TM/OLI IMAGES IN THE CONTEXT OF THE FOREST FIRE ANALYSIS IN LAS HURDES (CACERES)
    Borini Alves, Daniel
    Montorio Lloveria, Raquel
    Perez-Cabello, Fernando
    Vlassova, Lidia
    [J]. GEOFOCUS-REVISTA INTERNACIONAL DE CIENCIA Y TECNOLOGIA DE LA INFORMACION GEOGRAFICA, 2016, (18): : 65 - 82