Modeling complexity in biology

被引:26
|
作者
Louzoun, Y
Solomon, S
Atlan, H
Cohen, IR
机构
[1] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
[2] Hebrew Univ Jerusalem, Interdisciplinary Ctr Neural Computat, Jerusalem, Israel
[3] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[4] Hadassah Hebrew Univ Hosp, Human Biol Res Ctr, Jerusalem, Israel
[5] Weizmann Inst Sci, Dept Immunol, IL-76100 Rehovot, Israel
来源
PHYSICA A | 2001年 / 297卷 / 1-2期
关键词
ODE; inhomogeneity; germinal centers; emergence; microscopic simulation;
D O I
10.1016/S0378-4371(01)00201-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Biological systems, unlike physical or chemical systems, are characterized by the very inhomogeneous distribution of their components. The immune system, in particular, is notable for self-organizing its structure. Classically; the dynamics of natural systems have been described using differential equations. But, differential equation models fail to account for the emergence of large-scale inhomogeneities and for the influence of inhomogeneity on the overall dynamics of biological systems. Here, we show that a microscopic simulation methodology enables us to model the emergence of large-scale objects and to extend the scope of mathematical modeling in biology. We take a simple example from immunology and illustrate that the methods of classical differential equations and microscopic simulation generate contradictory results. Microscopic simulations generate a more faithful approximation of the reality of the immune system. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:242 / 252
页数:11
相关论文
共 50 条
  • [1] Mechanistic modeling confronts the complexity of molecular cell biology
    Phair, Robert D.
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2014, 25 (22) : 3494 - 3496
  • [3] Modeling biological complexity using Biology System Description Language (BiSDL)
    Muggianu, F.
    Benso, A.
    Bardini, R.
    Hu, E.
    Politano, G.
    Di Carlo, S.
    [J]. PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 713 - 717
  • [4] Understanding complexity in the HIF signaling pathway using systems biology and mathematical modeling
    Zsolt Fábián
    Cormac T. Taylor
    Lan K. Nguyen
    [J]. Journal of Molecular Medicine, 2016, 94 : 377 - 390
  • [5] Understanding complexity in the HIF signaling pathway using systems biology and mathematical modeling
    Fabian, Zsolt
    Taylor, Cormac T.
    Nguyen, Lan K.
    [J]. JOURNAL OF MOLECULAR MEDICINE-JMM, 2016, 94 (04): : 377 - 390
  • [6] Complexity in Cancer Biology
    Skvortsova, Ira
    [J]. SEMINARS IN CANCER BIOLOGY, 2015, 35 : 1 - 2
  • [7] Disentangling Complexity in Biology
    Beardsley, Timothy M.
    [J]. BIOSCIENCE, 2010, 60 (05) : 327 - 327
  • [8] AMBIGUITY OF COMPLEXITY IN BIOLOGY
    THOM, R
    [J]. ARCHIVES INTERNATIONALES DE PHYSIOLOGIE DE BIOCHIMIE ET DE BIOPHYSIQUE, 1986, 94 (04): : C101 - C110
  • [9] Complexity in cancer biology: is systems biology the answer?
    Koutsogiannouli, Evangelia
    Papavassiliou, Athanasios G.
    Papanikolaou, Nikolaos A.
    [J]. CANCER MEDICINE, 2013, 2 (02): : 164 - 177
  • [10] Modeling complexity: cognitive constraints and computational model-building in integrative systems biology
    Miles MacLeod
    Nancy J. Nersessian
    [J]. History and Philosophy of the Life Sciences, 2018, 40