A Combinatorial Construction for Strictly Optimal Frequency-Hopping Sequences

被引:9
|
作者
Fan, Cuiling [1 ,2 ]
Cai, Han [3 ]
Tang, Xiaohu [3 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu 610031, Peoples R China
[2] Chinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R China
[3] Southwest Jiaotong Univ, Informat Secur & Natl Comp Grid Lab, Chengdu 610031, Peoples R China
基金
美国国家科学基金会;
关键词
Frequency-hopping sequence; strictly optimal; disjoint cyclic perfect Mendelsohn difference family; difference matrix; HAMMING CORRELATION; OPTIMAL SETS; BOUNDS; CODES; PARAMETERS; CYCLOTOMY; FAMILIES; DESIGNS;
D O I
10.1109/TIT.2016.2556710
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Frequency-hopping sequences (FHSs) with favorable partial Hamming correlation properties have important applications in many synchronization and multiple-access systems. Strictly optimal FHSs are those FHSs with optimal partial Hamming autocorrelation irrespective of the correlation window length. In this paper, strictly optimal FHSs are investigated from a combinatorial approach. A generic connection between strictly optimal FHSs and disjoint cyclic perfect Mendelsohn difference families is established. By virtue of this connection, new strictly optimal FHSs are generated from some disjoint CPMDFs. These strictly optimal FHSs have new parameters not covered in the literature.
引用
收藏
页码:4769 / 4774
页数:6
相关论文
共 50 条
  • [1] Further combinatorial constructions for optimal frequency-hopping sequences
    Ge, Gennian
    Fuji-Hara, Ryoh
    Miao, Ying
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (08) : 1699 - 1718
  • [2] CONSTRUCTION OF THREE CLASSES OF STRICTLY OPTIMAL FREQUENCY-HOPPING SEQUENCE SETS
    Xie, Xianhong
    Ouyang, Yi
    Hu, Honggang
    Mao, Ming
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024, 18 (03) : 771 - 783
  • [3] Sets of optimal frequency-hopping sequences
    Ding, Cunsheng
    Yin, Jianxing
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (08) : 3741 - 3745
  • [4] A New Construction of Frequency-Hopping Sequences With Optimal Partial Hamming Correlation
    Cai, Han
    Zhou, Zhengchun
    Yang, Yang
    Tang, Xiaohu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (09) : 5782 - 5790
  • [5] Optimal Frequency-Hopping Sequences With New Parameters
    Chung, Jin-Ho
    Yang, Kyeongcheol
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (04) : 1685 - 1693
  • [6] A New Set of Optimal Frequency-Hopping Sequences
    Liu, Fang
    Peng, Daiyuan
    Tang, Xiaohu
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2010, E93A (11) : 2332 - 2336
  • [7] Algebraic constructions of optimal frequency-hopping sequences
    Ding, Cunsheng
    Moisio, Marko J.
    Yuan, Jin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (07) : 2606 - 2610
  • [8] Optimal frequency-hopping sequences via cyclotomy
    Chu, WS
    Colbourn, CJ
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (03) : 1139 - 1141
  • [9] Optimal Frequency-Hopping Sequences Based on Cyclotomy
    Zhang, Yun
    Ke, Pinhui
    Zhang, Shengyuan
    PROCEEDINGS OF THE FIRST INTERNATIONAL WORKSHOP ON EDUCATION TECHNOLOGY AND COMPUTER SCIENCE, VOL I, 2009, : 1122 - 1126
  • [10] Strictly Optimal Frequency-Hopping Sequence Sets With Optimal Family Sizes
    Cai, Han
    Yang, Yang
    Zhou, Zhengchun
    Tang, Xiaohu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (02) : 1087 - 1093