Analytic extensions of constant mean curvature one geometric catenoids in de Sitter 3-space

被引:2
|
作者
Fujimori, S. [1 ]
Kawakami, Y. [2 ]
Kokubu, M. [3 ]
Rossman, W. [4 ]
Umehara, M. [5 ]
Yamada, K. [6 ]
Yang, S. -D. [7 ]
机构
[1] Hiroshima Univ, Dept Math, Higashihiroshima, Higashihiroshima, Hiroshima 7398526, Japan
[2] Kanazawa Univ, Fac Math & Phys, Kanazawa, 9201192, Japan
[3] Tokyo Denki Univ, Sch Engn, Dept Math, Tokyo 1208551, Japan
[4] Kobe Univ, Fac Sci, Dept Math, Kobe 6578501, Japan
[5] Tokyo Inst Technol, Dept Math & Comp Sci, 2-12-1-W8-34 O Okayama,Meguro Ku, Tokyo 1528552, Japan
[6] Tokyo Inst Technol, Dept Math, Meguro, Tokyo 1528551, Japan
[7] Korea Univ, Dept Math, Seoul 136701, South Korea
基金
新加坡国家研究基金会; 日本学术振兴会;
关键词
Analytic completeness; Analytic extension; DC-manifold; ONE SURFACES;
D O I
10.1016/j.difgeo.2022.101924
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a certain simply-stated notion of "analytic completeness" of the image of a real analytic map implies the map admits no analytic extension. We also give a useful criterion for that notion of analytic completeness by defining arc-properness of continuous maps, which can be considered as a very weak version of properness. As an application, we judge the analytic completeness of a certain class of constant mean curvature surfaces (the so-called "G-catenoids") or their analytic extensions in the de Sitter 3-space.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:35
相关论文
共 50 条