Lossiness and Entropic Hardness for Ring-LWE

被引:12
|
作者
Brakerski, Zvika [1 ]
Doettling, Nico [2 ]
机构
[1] Weizmann Inst Sci, Rehovot, Israel
[2] CISPA Helmholtz Ctr Informat Secur, Saarbrucken, Germany
来源
基金
美国国家科学基金会; 欧盟地平线“2020”;
关键词
D O I
10.1007/978-3-030-64375-1_1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The hardness of the Ring Learning with Errors problem (RLWE) is a central building block for efficiency-oriented lattice-based cryptography. Many applications use an "entropic" variant of the problem where the so-called "secret" is not distributed uniformly as prescribed but instead comes from some distribution with sufficient minentropy. However, the hardness of the entropic variant has not been sub-stantiated thus far. For standard LWE (not over rings) entropic results are known, using a "lossiness approach" but it was not known how to adapt this approach to the ring setting. In this work we present the first such results, where entropic security is established either under RLWE or under the Decisional Small Polynomial Ratio (DSPR) assumption which is a mild variant of the NTRU assumption. In the context of general entropic distributions, our results in the ring setting essentially match the known lower bounds (Bolboceanu et al., Asiacrypt 2019; Brakerski and Dottling, Eurocrypt 2020).
引用
收藏
页码:1 / 27
页数:27
相关论文
共 50 条
  • [1] Order-LWE and the Hardness of Ring-LWE with Entropic Secrets
    Bolboceanu, Madalina
    Brakerski, Zvika
    Perlman, Renen
    Sharma, Devika
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2019, PT II, 2019, 11922 : 91 - 120
  • [2] Masking ring-LWE
    Reparaz, Oscar
    Roy, Sujoy Sinha
    de Clercq, Ruan
    Vercauteren, Frederik
    Verbauwhede, Ingrid
    JOURNAL OF CRYPTOGRAPHIC ENGINEERING, 2016, 6 (02) : 139 - 153
  • [3] On the Ring-LWE and Polynomial-LWE Problems
    Rosca, Miruna
    Stehle, Damien
    Wallet, Alexandre
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2018, PT I, 2018, 10820 : 146 - 173
  • [4] How (Not) to Instantiate Ring-LWE
    Peikert, Chris
    SECURITY AND CRYPTOGRAPHY FOR NETWORKS, SCN 2016, 2016, 9841 : 411 - 430
  • [5] Ring-LWE in Polynomial Rings
    Ducas, Leo
    Durmus, Alain
    PUBLIC KEY CRYPTOGRAPHY - PKC 2012, 2012, 7293 : 34 - 51
  • [6] A Toolkit for Ring-LWE Cryptography
    Lyubashevsky, Vadim
    Peikert, Chris
    Regev, Oded
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2013, 2013, 7881 : 35 - 54
  • [7] A Masked Ring-LWE Implementation
    Reparaz, Oscar
    Roy, Sujoy Sinha
    Vercauteren, Frederik
    Verbauwhede, Ingrid
    CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2015, 2015, 9293 : 683 - 702
  • [8] Compact Ring-LWE Cryptoprocessor
    Roy, Sujoy Sinha
    Vercauteren, Frederik
    Mentens, Nele
    Chen, Donald Donglong
    Verbauwhede, Ingrid
    CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2014, 2014, 8731 : 371 - 391
  • [9] Klepto for Ring-LWE Encryption
    Xiao, Dianyan
    Yu, Yang
    COMPUTER JOURNAL, 2018, 61 (08): : 1228 - 1239
  • [10] Large Modulus Ring-LWE ≥ Module-LWE
    Albrecht, Martin R.
    Deo, Amit
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2017, PT I, 2017, 10624 : 267 - 296