Total angular momentum from Dirac eigenspinors

被引:6
|
作者
Szabados, Laszlo B. [1 ]
机构
[1] Res Inst Particle & Nucl Phys, H-1525 Budapest, Hungary
关键词
D O I
10.1088/0264-9381/25/2/025007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The eigenvalue problem for Dirac operators, constructed from two connections on the spinor bundle over closed spacelike 2-surfaces, is investigated. A class of divergence-free vector fields, built from the eigenspinors, are found, which, for the lowest eigenvalue, reproduce the rotation Killing vectors of metric spheres, and provide rotation BMS vector fields at future null infinity. This makes it possible to introduce a well-defined, gauge invariant spatial angular momentum at null infinity, which reduces to the standard expression in stationary spacetimes. The general formula for the angular momentum flux carried away by the gravitational radiation is also derived.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] ON SPIN ANGULAR MOMENTUM OF DIRAC PARTICLE
    HILGEVOORD, J
    WOUTHUYSEN, SA
    NUCLEAR PHYSICS, 1963, 40 (01): : 1 - &
  • [2] ANGULAR MOMENTUM IN DIRAC NEW ELECTRODYNAMICS
    ISKRAUT, RW
    NATURE, 1952, 170 (4339) : 1125 - 1126
  • [3] Angular momentum operator in the Dirac equation
    Villalba, V.M.
    European Journal of Physics, 1994, 15 (04)
  • [4] The total angular momentum algebra related to the S3 Dunkl Dirac equation
    De Bie, Hendrik
    Oste, Roy
    Van der Jeugt, Joris
    ANNALS OF PHYSICS, 2018, 389 : 192 - 218
  • [5] CLASSICAL EIGENSPINORS AND THE DIRAC-EQUATION
    BAYLIS, WE
    PHYSICAL REVIEW A, 1992, 45 (07): : 4293 - 4302
  • [6] Dirac quantum walks with conserved angular momentum
    Gareth Jay
    Pablo Arnault
    Fabrice Debbasch
    Quantum Studies: Mathematics and Foundations, 2021, 8 : 419 - 430
  • [7] Dirac quantum walks with conserved angular momentum
    Jay, Gareth
    Arnault, Pablo
    Debbasch, Fabrice
    QUANTUM STUDIES-MATHEMATICS AND FOUNDATIONS, 2021, 8 (04) : 419 - 430
  • [8] Dirac Operators for the Dunkl Angular Momentum Algebra
    Calvert, Kieran
    Martino, Marcelo De
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2022, 18
  • [9] Biquaternionic representations of angular momentum and Dirac equation
    Tanisli, M
    Özgür, G
    ACTA PHYSICA SLOVACA, 2003, 53 (03) : 243 - 252
  • [10] Superfluidity of total angular momentum
    Zhang, Yeyang
    Shindou, Ryuichi
    PHYSICAL REVIEW B, 2024, 109 (22)