Mechanically exfoliated 2D nanomaterials as saturable absorber for Q-switched erbium doped fiber laser

被引:24
|
作者
Ahmed, M. H. M. [1 ]
Al-Masoodi, A. H. H. [1 ]
Latiff, A. A. [2 ]
Arof, H. [1 ]
Harun, S. W. [1 ,2 ]
机构
[1] Univ Malaya, Dept Elect Engn, Kuala Lumpur 50603, Malaysia
[2] Univ Malaya, Photon Res Ctr, Kuala Lumpur 50603, Malaysia
关键词
2D nanomaterials; MoS2; Black phosphorus; Q-switching; Passive saturable absorber; TOPOLOGICAL INSULATOR BI2SE3; BLACK PHOSPHORUS; MU-M; MOS2; GRAPHENE; PHOTONICS; CRYSTALS; SINGLE; BI2TE3; RAMAN;
D O I
10.1007/s12648-017-1045-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We experimentally demonstrate a passive, stable and low cost Q-switched erbium-doped fiber laser based on molybdenum disulfide (MoS2) and black phosphorus (BP) saturable absorber (SA). Both MoS2 and BP SAs are prepared by mechanically exfoliating the crystal and fixing the acquired flakes onto the end surface of a standard FC/PC fiber connector. By integrating either MoS2 or BP SA into the laser cavity, a stable Q-switched operation is achieved at wavelengths of 1551.4 or 1552.9 nm respectively. Using the MoS2 SA, the repetition rate of the output laser increases from 14.25 to 38.43 kHz as the 980 nm pump power rises from 57 to 170 mW while its pulse width reduces from 10.7 to 5.02 mu s. The maximum pulse energy was 141.3 nJ. On the other hand, with the BP SA, the repetition rate and pulse width fall in the ranges of 9.1-44.33 kHz and 20.75-7.04 mu s respectively, as the pump power grows from 50 to 170 mW. The laser with the BP SA, produces the maximum pulse energy of 134 nJ. The experimental results indicate that MoS2 and BP SAs can be used to generate stable Q-switching pulses at 1.5 mu m region successfully.
引用
收藏
页码:1259 / 1264
页数:6
相关论文
共 50 条
  • [1] Mechanically exfoliated 2D nanomaterials as saturable absorber for Q-switched erbium doped fiber laser
    M. H. M. Ahmed
    A. H. H. Al-Masoodi
    A. A. Latiff
    H. Arof
    S. W. Harun
    Indian Journal of Physics, 2017, 91 : 1259 - 1264
  • [2] Passively Q-switched Ytterbium doped fiber laser with mechanically exfoliated MoS2 saturable absorber
    Al-Masoodi, A. H. H.
    Ahmed, M. H. M.
    Latiff, A. A.
    Arof, H.
    Harun, S. W.
    INDIAN JOURNAL OF PHYSICS, 2017, 91 (05) : 575 - 580
  • [3] Passively Q-switched Ytterbium doped fiber laser with mechanically exfoliated MoS2 saturable absorber
    A. H. H. Al-Masoodi
    M. H. M. Ahmed
    A. A. Latiff
    H. Arof
    S. W. Harun
    Indian Journal of Physics, 2017, 91 : 575 - 580
  • [4] A Q-switched erbium-doped fiber laser with a graphene saturable absorber
    Ismail, M. A.
    Ahmad, F.
    Harun, S. W.
    Arof, H.
    Ahmad, H.
    LASER PHYSICS LETTERS, 2013, 10 (02)
  • [5] Tunable passively Q-switched ytterbium-doped fiber laser with mechanically exfoliated GaSe saturable absorber
    Ahmad, H.
    Aidit, S. N.
    Ooi, S. I.
    Tiu, Z. C.
    CHINESE OPTICS LETTERS, 2018, 16 (02)
  • [6] Tunable passively Q-switched ytterbium-doped fiber laser with mechanically exfoliated GaSe saturable absorber
    H.Ahmad
    S.N.Aidit
    S.I.Ooi
    Z.C.Tiu
    Chinese Optics Letters, 2018, 16 (02) : 97 - 101
  • [7] Q-switched erbium-doped fiber laser with a black phosphorus saturable absorber
    Razak N.N.
    Latiff A.A.
    Zakaria Z.
    Harun S.W.
    Photonics Letters of Poland, 2017, 9 (02): : 72 - 74
  • [8] Q-switched erbium-doped fiber laser with silicon oxycarbide saturable absorber
    Nizamani, B.
    Memon, F. A.
    Umar, Z. A.
    Salam, S.
    Najm, M. M.
    Khudus, M. I. M. Abdul
    Hanafi, E.
    Baig, M. A.
    Harun, S. W.
    OPTIK, 2020, 219
  • [9] Q-switched Erbium-doped fiber laser with solid state saturable absorber fiber
    Markom, A. M.
    Rosli, N. S.
    Hamzah, A.
    Ahmad, H.
    Harun, S. W.
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2015, 9 (3-4): : 329 - 331
  • [10] Q-switched erbium-doped fiber laser based on nanodiamond saturable absorber
    Shakaty, Aseel A.
    Hmood, Jassim K.
    Mahdi, Bushra R.
    Mahdi, R., I
    Al-Azzawi, Alabbas A.
    OPTICS AND LASER TECHNOLOGY, 2022, 146