Convergence of the Rogers-Ramanujan continued fraction

被引:8
|
作者
Buslaev, VI [1 ]
机构
[1] RAS, VA Steklov Math Inst, Moscow, Russia
关键词
D O I
10.1070/SM2003v194n06ABEH000741
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Set q = exp(2piitau), where tau is an irrational number, and let R-q be the radius of holomorphy of the Rogers-Ramanujan function G(q)(z) = 1 + Sigma(n=1)(infinity) z(n) q(n2)/(1-q)...(1-q(n)). As is known, R-q less than or equal to 1 and for each alpha is an element of [0, 1] there exists q = q(alpha) such that R-q(alpha) = alpha. It is proved here that the function H-q(z) = G(q)(z)/G(q)(qz) is meromorphic not only in the disc = {\z\ < R-q}, but also in the disc D = {\z\ < 1}, which is larger for R-q < 1; and that the Rogers-Ramanujan continued fraction converges to H-q on compact subsets contained in D \ Omega(q), where Omega(q) is the union of circles with centres at z = 0 and passing through the poles of H-q. The convergence of the Rogers-Ramanujan continued fraction in the domain {\z\ < max (R-q, 1/2+\1+q\)}/Omega(q) was established earlier by Lubinsky.
引用
收藏
页码:833 / 856
页数:24
相关论文
共 50 条
  • [1] The Rogers-Ramanujan continued fraction
    Berndt, BC
    Chan, HH
    Huang, SS
    Kang, SY
    Sohn, J
    Son, SH
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 105 (1-2) : 9 - 24
  • [2] Convergence properties of the classical and generalized Rogers-Ramanujan continued fraction
    Ciolan E.-A.
    Neiss R.A.
    Research in Number Theory, 1 (1)
  • [3] On the generalized Rogers-Ramanujan continued fraction
    Berndt, BC
    Yee, AJ
    RAMANUJAN JOURNAL, 2003, 7 (1-3): : 321 - 331
  • [4] On the Rogers-Ramanujan periodic continued fraction
    Buslaev, VI
    Buslaeva, SF
    MATHEMATICAL NOTES, 2003, 74 (5-6) : 783 - 793
  • [5] ON THE ROGERS-RAMANUJAN CONTINUED-FRACTION
    RAMANATHAN, KG
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1984, 93 (2-3): : 67 - 77
  • [6] IDENTITIES FOR THE ROGERS-RAMANUJAN CONTINUED FRACTION
    Baruah, Nayandeep deka
    Talukdar, Pranjal
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2025, 62 (01) : 97 - 126
  • [7] Singular values of the Rogers-Ramanujan continued fraction
    Alice Gee
    Mascha Honsbeek
    The Ramanujan Journal, 2006, 11
  • [8] Explicit evaluations of the Rogers-Ramanujan continued fraction
    Berndt, BC
    Chan, HH
    Zhang, LC
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1996, 480 : 141 - 159
  • [9] Singular values of the Rogers-Ramanujan continued fraction
    Gee, Alice
    Honsbeek, Mascha
    RAMANUJAN JOURNAL, 2006, 11 (03): : 267 - 284
  • [10] About the Cover: The Continued Fraction of Rogers-Ramanujan
    Wegert, Elias
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2019, 19 (01) : 1 - 2