Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data Processed in the Google Earth Engine Platform

被引:127
|
作者
Alencar, Ane [1 ]
Shimbo, Julia Z. [1 ]
Lenti, Felipe [1 ]
Marques, Camila Balzani [1 ]
Zimbres, Barbara [1 ]
Rosa, Marcos [2 ]
Arruda, Vera [1 ]
Castro, Isabel [1 ]
Fernandes Marcico Ribeiro, Joao Paulo [1 ]
Varela, Victoria [1 ]
Alencar, Isa [1 ]
Piontekowski, Valderli [1 ]
Ribeiro, Vivian [1 ,3 ]
Bustamante, Mercedes M. C. [4 ]
Sano, Edson Eyji [5 ]
Barroso, Mario [6 ]
机构
[1] Amazon Environm Res Inst IPAM, SCN 211,Bloco B,Sala 201, BR-70836520 Brasilia, DF, Brazil
[2] Univ Sao Paulo, Programa Posgrad Geog Fis, Fac Filosofia Letras & Ciencias Humanas, BR-05508080 Sao Paulo, Brazil
[3] SEI, Linnegatan 87D, S-11523 Stockholm, Sweden
[4] Univ Brasilia, Dept Ecol, Campus Darcy Ribeiro, BR-70910900 Brasilia, DF, Brazil
[5] Inst Brasileiro Meio Ambiente & Recursos Nat Reno, SCEN Trecho 2,Edificio Sede, BR-70818900 Brasilia, DF, Brazil
[6] Nat Conservancy Brasil TNC, SCN Quadra 05 Bloco Sala 1407-Torre Sul, BR-70715900 Brasilia, DF, Brazil
关键词
Cerrado; land cover; grasslands; forests; monitoring; random forest; spectral indexes; vegetation seasonality; DECISION TREE CLASSIFIER; ESTIMATING AREA; COVER CHANGES; CERRADO; ACCURACY; DYNAMICS; CLIMATE; INDEXES;
D O I
10.3390/rs12060924
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Widespread in the subtropics and tropics of the Southern Hemisphere, savannas are highly heterogeneous and seasonal natural vegetation types, which makes change detection (natural vs. anthropogenic) a challenging task. The Brazilian Cerrado represents the largest savanna in South America, and the most threatened biome in Brazil owing to agricultural expansion. To assess the native Cerrado vegetation (NV) areas most susceptible to natural and anthropogenic change over time, we classified 33 years (1985-2017) of Landsat imagery available in the Google Earth Engine (GEE) platform. The classification strategy used combined empirical and statistical decision trees to generate reference maps for machine learning classification and a novel annual dataset of the predominant Cerrado NV types (forest, savanna, and grassland). We obtained annual NV maps with an average overall accuracy ranging from 87% (at level 1 NV classification) to 71% over the time series, distinguishing the three main NV types. This time series was then used to generate probability maps for each NV class. The native vegetation in the Cerrado biome declined at an average rate of 0.5% per year (748,687 ha yr(-1)), mostly affecting forests and savannas. From 1985 to 2017, 24.7 million hectares of NV were lost, and now only 55% of the NV original distribution remains. Of the remnant NV in 2017 (112.6 million hectares), 65% has been stable over the years, while 12% changed among NV types, and 23% was converted to other land uses but is now in some level of secondary NV. Our results were fundamental in indicating areas with higher rates of change in a long time series in the Brazilian Cerrado and to highlight the challenges of mapping distinct NV types in a highly seasonal and heterogeneous savanna biome.
引用
下载
收藏
页数:23
相关论文
共 50 条
  • [1] Mapping Three Decades of Changes in the Tropical Andean Glaciers Using Landsat Data Processed in the Earth Engine
    Cayo, Efrain Yury Turpo
    Borja, Maria Olga
    Espinoza-Villar, Raul
    Moreno, Nicole
    Camargo, Rodney
    Almeida, Claudia
    Hopfgartner, Kathrin
    Yarleque, Christian
    Souza Jr, Carlos M.
    REMOTE SENSING, 2022, 14 (09)
  • [2] BRAZILIAN MIDWEST NATIVE VEGETATION MAPPING BASED ON GOOGLE EARTH ENGINE
    Estrabis, N., V
    Osco, L.
    Ramos, A. P.
    Goncalves, W. N.
    Liesenberg, V
    Pistori, H.
    Marcato Junior, J.
    2020 IEEE LATIN AMERICAN GRSS & ISPRS REMOTE SENSING CONFERENCE (LAGIRS), 2020, : 613 - 618
  • [3] Vegetation Types Mapping Using Multi-Temporal Landsat Images in the Google Earth Engine Platform
    Aghababaei, Masoumeh
    Ebrahimi, Ataollah
    Naghipour, Ali Asghar
    Asadi, Esmaeil
    Verrelst, Jochem
    REMOTE SENSING, 2021, 13 (22)
  • [4] An alternative approach for mapping burn scars using Landsat imagery, Google Earth Engine, and Deep Learning in the Brazilian Savanna
    Arruda, Vera L. S.
    Piontekowski, Valderli J.
    Alencar, Ane
    Pereira, Reginaldo S.
    Matricardi, Eraldo A. T.
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2021, 22
  • [5] Mapping of Flood Areas Using Landsat with Google Earth Engine Cloud Platform
    Mehmood, Hamid
    Conway, Crystal
    Perera, Duminda
    ATMOSPHERE, 2021, 12 (07)
  • [6] Mapping three decades of annual irrigation across the US High Plains Aquifer using Landsat and Google Earth Engine
    Deines, Jillian M.
    Kendall, Anthony D.
    Crowley, Morgan A.
    Rapp, Jeremy
    Cardille, Jeffrey A.
    Hyndman, David W.
    REMOTE SENSING OF ENVIRONMENT, 2019, 233
  • [7] MAPPING NATIVE VEGETATION USING LANDSAT DATA
    TIMMINS, SM
    CLARKSON, BD
    SHAW, WB
    ATKINSON, IAE
    NEW ZEALAND JOURNAL OF SCIENCE, 1984, 27 (04): : 389 - 397
  • [8] Multi-temporal analysis of land cover changes using Landsat data through Google Earth Engine platform
    Capolupo, Alessandra
    Monterisi, Cristina
    Saponaro, Mirko
    Tarantino, Eufemia
    EIGHTH INTERNATIONAL CONFERENCE ON REMOTE SENSING AND GEOINFORMATION OF THE ENVIRONMENT (RSCY2020), 2020, 11524
  • [9] Automated Inundation Mapping Over Large Areas Using Landsat Data and Google Earth Engine
    Inman, Victoria L.
    Lyons, Mitchell B.
    REMOTE SENSING, 2020, 12 (08)
  • [10] Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine
    Souza Jr, Carlos M.
    Shimbo, Julia Z.
    Rosa, Marcos R.
    Parente, Leandro L.
    Alencar, Ane A.
    Rudorff, Bernardo F. T.
    Hasenack, Heinrich
    Matsumoto, Marcelo
    Ferreira, Laerte G.
    Souza-Filho, Pedro W. M.
    de Oliveira, Sergio W.
    Rocha, Washington F.
    Fonseca, Antonio, V
    Marques, Camila B.
    Diniz, Cesar G.
    Costa, Diego
    Monteiro, Dyeden
    Rosa, Eduardo R.
    Velez-Martin, Eduardo
    Weber, Eliseu J.
    Lenti, Felipe E. B.
    Paternost, Fernando F.
    Pareyn, Frans G. C.
    Siqueira, Joao, V
    Viera, Jose L.
    Ferreira Neto, Luiz C.
    Saraiva, Marciano M.
    Sales, Marcio H.
    Salgado, Moises P. G.
    Vasconcelos, Rodrigo
    Galano, Soltan
    Mesquita, Vinicius V.
    Azevedo, Tasso
    REMOTE SENSING, 2020, 12 (17)