Support vector machine approach to identifying buildings using multi-temporal ALOS/PALSAR data

被引:6
|
作者
Zhang, Yuan [1 ]
Wang, Cuizhen [2 ]
Chen, Xia [3 ]
Su, Shiliang [3 ]
机构
[1] Chinese Acad Sci, NE Inst Geog & Agroecol, Res Ctr Remote Sensing & Geosci, Changchun 130012, Peoples R China
[2] Univ Missouri, Dept Geog, Columbia, MO 65211 USA
[3] Zhejiang Univ, Coll Environm & Resources Sci, Hangzhou 310029, Zhejiang, Peoples R China
关键词
SPECTRAL MIXTURE ANALYSIS; LAND-COVER CLASSIFICATION; SAR IMAGES; IMPERVIOUS SURFACES; URBAN; NOISE; INFORMATION; REMOVAL; FILTERS; CHINA;
D O I
10.1080/01431161.2010.519006
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Accurate detection of built-up areas is valuable for quantifying the level of urbanization and monitoring the decreasing amount of agricultural land. In this study, three-temporal, dual-polarization Advanced Land Observing Satellite (ALOS)/Phased Array type L-band Synthetic Aperture Radar (PALSAR) images were integrated to map buildings in the Yangtze River Delta of East China, where land has been intensively used. The results show that the support vector machine (SVM) classifier performs well in identifying buildings, with an accuracy of 90% in urban areas and 95% in rural areas, even with only a small number of training samples. Buildings in urban areas are more likely to be underestimated (commission error of 15%) than those in a rural environment. Visual inspection and quantitative analysis confirmed that the Local Sigma Filter considerably reduced random speckle noise in the PALSAR imagery. Thus, the filter is suitable for enhancing feature extraction of future multi-polarization and multi-temporal SAR imagery. Overall, the buildings identification approach proposed in this study could serve as a valuable tool for operational monitoring of rural land use change and urban sprawl.
引用
收藏
页码:7163 / 7177
页数:15
相关论文
共 50 条
  • [1] DETECTION OF RICE-PLANTED AREA USING MULTI-TEMPORAL ALOS/PALSAR DATA
    Miyaoka, K.
    Maki, M.
    Susaki, J.
    Homma, K.
    Yoshida, K.
    Hongo, C.
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 6777 - 6780
  • [2] FOREST MAPPING AND MONITORING IN TASMANIA USING MULTI-TEMPORAL LANDSAT AND ALOS-PALSAR DATA
    Lehmann, E. A.
    Zhou, Z. -S.
    Caccetta, P.
    Milne, A.
    Mitchell, A.
    Lowell, K.
    Held, A.
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 6431 - 6434
  • [3] DETECTION OF PAST SLOPE ACTIVITY IN A DESERT AREA USING MULTI-TEMPORAL DINSAR WITH ALOS PALSAR DATA
    Rocca, Alfredo
    Mazzanti, Paolo
    Perssin, Daniele
    Bozzano, Francesca
    [J]. ITALIAN JOURNAL OF ENGINEERING GEOLOGY AND ENVIRONMENT, 2014, 14 (01): : 35 - 49
  • [4] EVALUATION OF MULTI-TEMPORAL ALOS/PALSAR FOR MONITORING THE BRAZILIAN AMAZON RAINFOREST
    Sanchez, Gildardo Arango
    Shimabukuro, Yosio Edemir
    Valeriano, Dalton de Morisson
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 6287 - 6290
  • [5] A METHOD FOR MONITORING HYDROLOGICAL CONDITIONS BENEATH HERBACEOUS WETLANDS USING MULTI-TEMPORAL ALOS PALSAR COHERENCE DATA
    Zhang, Meimei
    Li, Zhen
    Tian, Bangsen
    Zhou, Jianmin
    Zeng, Jiangyuan
    [J]. IWIDF 2015, 2015, 47 (W4): : 221 - 226
  • [6] A method for monitoring hydrological conditions beneath herbaceous wetlands using multi-temporal ALOS PALSAR coherence data
    Zhang, Meimei
    Li, Zhen
    Tian, Bangsen
    Zhou, Jianmin
    Zeng, Jiangyuan
    [J]. REMOTE SENSING LETTERS, 2015, 6 (08) : 618 - 627
  • [7] Clear-Cut Detection in Swedish Boreal Forest Using Multi-Temporal ALOS PALSAR Backscatter Data
    Santoro, Maurizio
    Fransson, Johan E. S.
    Eriksson, Leif E. B.
    Ulander, Lars M. H.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2010, 3 (04) : 618 - 631
  • [8] ESTIMATION OF CROP EXTENT USING MULTI-TEMPORAL PALSAR DATA
    Milisavljevic, Nada
    Holecz, Francesco
    Bloch, Isabelle
    Closson, Damien
    Collivignarelli, Francesco
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 5943 - 5946
  • [9] Estimation of Above Ground Biomass Using Support Vector Machines and ALOS/PALSAR data
    Sivasankar, Thota
    Lone, Junaid Mushtaq
    Sarma, K. K.
    Qadir, Abdul
    Raju, P. L. N.
    [J]. VIETNAM JOURNAL OF EARTH SCIENCES, 2019, 41 (02): : 95 - 104
  • [10] Detecting areas affected by flood using multi-temporal ALOS PALSAR remotely sensed data in Karawang, West Java, Indonesia
    Fajar Yulianto
    Parwati Sofan
    Any Zubaidah
    Kusumaning Ayu Dyah Sukowati
    Junita Monika Pasaribu
    Muhammad Rokhis Khomarudin
    [J]. Natural Hazards, 2015, 77 : 959 - 985