Counting split interval orders

被引:1
|
作者
Reeds, JA [1 ]
Fishburn, PC [1 ]
机构
[1] AT&T Labs Res, Shannon Lab, Florham Pk, NJ 07932 USA
关键词
forbidden posets; interval order; partial order; split interval order;
D O I
10.1023/A:1011914411416
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A poset (X,<) is a split interval order (a.k.a. unit bitolerance order, proper bitolerance order) if a real interval and a distinguished point in that interval can be assigned to each x is an element ofX so that x <y precisely when x's distinguished point precedes y's interval, and x's interval precedes y's distinguished point. For each \X \ less than or equal to9, we count the split interval orders and identify all posets that are minimal forbidden posets for split interval orders. The paper is a companion to "Counting Split Semiorders" by Fishburn and Reeds (this issue).
引用
收藏
页码:129 / 135
页数:7
相关论文
共 50 条
  • [1] Counting Split Interval Orders
    James A. Reeds
    Peter C. Fishburn
    [J]. Order, 2001, 18 : 129 - 135
  • [2] COUNTING INTERVAL ORDERS
    HAXELL, PE
    MCDONALD, JJ
    THOMASON, SK
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1987, 4 (03): : 269 - 272
  • [3] Counting general and self-dual interval orders
    Jelinek, Vit
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (03) : 599 - 614
  • [4] COUNTING END-POINT SEQUENCES FOR INTERVAL ORDERS AND INTERVAL-GRAPHS
    BELFER, A
    GOLUMBIC, MC
    [J]. DISCRETE MATHEMATICS, 1993, 114 (1-3) : 23 - 39
  • [5] Split orders
    Guenver, GB
    Rampon, JX
    [J]. DISCRETE MATHEMATICS, 2004, 276 (1-3) : 249 - 267
  • [6] INTERVAL ORDERS AND CIRCLE ORDERS
    FISHBURN, PC
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1988, 5 (03): : 225 - 234
  • [7] INTERVAL ORDERS BASED ON WEAK ORDERS
    BOGART, KP
    BONIN, J
    MITAS, J
    [J]. DISCRETE APPLIED MATHEMATICS, 1995, 60 (1-3) : 93 - 98
  • [8] INTERVAL-GRAPHS AND INTERVAL ORDERS
    FISHBURN, PC
    [J]. DISCRETE MATHEMATICS, 1985, 55 (02) : 135 - 149
  • [9] INTERVAL REPRESENTATIONS FOR INTERVAL ORDERS AND SEMIORDERS
    FISHBURN, PC
    [J]. JOURNAL OF MATHEMATICAL PSYCHOLOGY, 1973, 10 (01) : 91 - 105
  • [10] Interval orders with two interval lengths
    Boyadzhiyska, Simona
    Isaak, Garth
    Trenk, Ann N.
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 267 : 52 - 63