Reproducing kernel Hilbert spaces of CR functions for the Euclidean motion group

被引:7
|
作者
Barbieri, D. [1 ]
Citti, G. [2 ]
机构
[1] Univ Autonoma Madrid, Dept Math, E-28049 Madrid, Spain
[2] Univ Bologna, Dept Math, I-40126 Bologna, Italy
关键词
Euclidean motion group; reproducing kernel Hilbert spaces; uncertainty principle; CR functions; UNCERTAINTY PRINCIPLE; COHERENT STATES; TRANSFORM;
D O I
10.1142/S021953051450047X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the geometric structure of the reproducing kernel Hilbert space associated to the continuous wavelet transform generated by the irreducible representations of the group of Euclidean motions of the plane SE(2). A natural Hilbert norm for functions on the group is constructed that makes the wavelet transform an isometry, but since the considered representations are not square integrable, the resulting Hilbert space will not coincide with L-2(SE(2)). The reproducing kernel Hilbert subspace generated by the wavelet transform, for the case of a minimal uncertainty mother wavelet, can be characterized in terms of the complex regularity defined by the natural CR structure of the group. Relations with the Bargmann transform are presented.
引用
收藏
页码:331 / 346
页数:16
相关论文
共 50 条
  • [1] Distance Functions for Reproducing Kernel Hilbert Spaces
    Arcozzi, N.
    Rochberg, R.
    Sawyer, E.
    Wick, B. D.
    [J]. FUNCTION SPACES IN MODERN ANALYSIS, 2011, 547 : 25 - +
  • [2] Cyclicity in Reproducing Kernel Hilbert Spaces of Analytic Functions
    Emmanuel Fricain
    Javad Mashreghi
    Daniel Seco
    [J]. Computational Methods and Function Theory, 2014, 14 : 665 - 680
  • [4] Cyclicity in Reproducing Kernel Hilbert Spaces of Analytic Functions
    Fricain, Emmanuel
    Mashreghi, Javad
    Seco, Daniel
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2014, 14 (04) : 665 - 680
  • [5] Functional Gradient Motion Planning in Reproducing Kernel Hilbert Spaces
    Marinho, Zita
    Boots, Byron
    Dragan, Anca
    Byravan, Arunkumar
    Gordon, Geoffrey J.
    Srinivasa, Siddhartha
    [J]. ROBOTICS: SCIENCE AND SYSTEMS XII, 2016,
  • [6] Reproducing Kernel Hilbert Spaces of Smooth Fractal Interpolation Functions
    Luor, Dah-Chin
    Hsieh, Liang-Yu
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (05)
  • [7] Interpolation of monogenic functions by using reproducing kernel Hilbert spaces
    Cerejeiras, Paula
    Kaehler, Uwe
    Legatiuk, Dmitrii
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (17) : 8100 - 8114
  • [8] Reproducing Kernel Hilbert Spaces of Polyanalytic Functions of Infinite Order
    Daniel Alpay
    Fabrizio Colombo
    Kamal Diki
    Irene Sabadini
    [J]. Integral Equations and Operator Theory, 2022, 94
  • [9] Reproducing Kernel Hilbert Spaces of Polyanalytic Functions of Infinite Order
    Alpay, Daniel
    Colombo, Fabrizio
    Diki, Kamal
    Sabadini, Irene
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2022, 94 (04)
  • [10] REPRODUCING KERNEL HILBERT SPACES AND PROBABILITY LAW OF RANDOM FUNCTIONS
    FORTET, R
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 278 (22): : 1439 - 1440