AE CONVERGENCE OF ANISOTROPIC PARTIAL FOURIER INTEGRALS ON EUCLIDEAN SPACES AND HEISENBERG GROUPS

被引:0
|
作者
Mueller, D. [1 ]
Prestini, E. [2 ]
机构
[1] CA Univ Kiel, Math Seminar, D-24098 Kiel, Germany
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
Rademacher-Men'shov theorem; Heisenberg group; sub-Laplacian; spectral integral;
D O I
10.4064/cm118-1-18
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define partial spectral integrals S(R) on the Heisenberg group by means of localizations to isotropic or anisotropic dilates of suitable star-shaped subsets V containing the joint spectrum of the partial sub-Laplacians and the central derivative. Under the assumption that an L(2)-function f lies in the logarithmic Sobolev space given by log(2 + L(alpha)) f is an element of L(2), where L(alpha) is a suitable "generalized" sub-Laplacian associated to the dilation structure, we show that S(R)f(x) converges a.e. to f(x) as R -> infinity.
引用
收藏
页码:333 / 347
页数:15
相关论文
共 18 条