On generalized Schur numbers for x1+x2+c = kx3

被引:0
|
作者
Martinelli, Bernie [1 ]
Schaal, Daniel
机构
[1] Clarion Univ Pennsylvania, Dept Math, Clarion, PA 16214 USA
[2] S Dakota State Univ, Dept Math & Stat, Brookings, SD 57007 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For every integer c and every positive integer k, let n = r(c, k) be the least integer, provided that it exists, such that for every coloring Delta: {1, 2,..., n} -> {0, 11}, there exist three integers, x(1), x(2), x(3), (not necessarily distinct) such that Delta(x(1)) = Delta(x(2)) = Delta(x(3)) and x(1) + x(2) + c = kx(3) If such an integer does not exist, then let r(c, k) = infinity. The main result of this paper is that [GRAPHICS] for every integer c. In addition, a lower bound is found for r(c, k) for all integers c and positive integers k and linear upper and lower bounds are found for r(c, 3) for all positive integers c.
引用
收藏
页码:33 / 42
页数:10
相关论文
共 50 条
  • [1] Generalized Schur Numbers for x1 + x2 + c=3x3
    Kezdy, Andre E.
    Snevily, Hunter S.
    White, Susan C.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [2] Rainbow numbers for the generalized Schur equation x1+ x2
    Budden, Mark
    Landman, Bruce
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2024, 90 : 66 - 79
  • [3] Some inequalities between KX3 and χ( ?X) for a threefold of general type
    Dong-Kwan Shin
    Mathematische Zeitschrift, 1997, 225 : 133 - 138
  • [4] On Generalized Schur Numbers of the Equation x plus ay = z
    Khamseh, Amir
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [5] Swapping 2 x 2 blocks in the Schur and generalized Schur form
    Camps, Daan
    Mastronardi, Nicola
    Vandebril, Raf
    Van Dooren, Paul
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 373
  • [6] Distinct Rado Numbers for x1 + x2 + c = x3
    Flint, Donna
    Lowery, Bradley
    Schaal, Daniel
    ARS COMBINATORIA, 2013, 110 : 331 - 342
  • [7] Two-color rado numbers for the equations 2x1 + 2x2 + c = x3 and 2x1 + 2x2 + 2x3 + C = x4
    Schaal, Daniel
    Zinter, Melanie
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2015, 95 : 201 - 214
  • [8] Generalized Lucas numbers of the form 3 x 2m
    Rihane, Salah Eddine
    Adegbindin, Chefiath Awero
    Togbe, Alain
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2021, 27 (02) : 129 - 136
  • [9] Generalized Lucas numbers of the form 11x2 ∓ 1
    Keskin, Refik
    Ogut, Ummugulsum
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (04): : 1035 - 1045
  • [10] GENERALIZED LUCAS NUMBERS OF THE FORM 5kx2 AND 7kx2
    Karaatli, Olcay
    Keskin, Refik
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (05) : 1467 - 1480