Machine learning aided classification of tremor in multiple sclerosis

被引:8
|
作者
Hossen, Abdulnasir [1 ]
Anwar, Abdul Rauf [2 ]
Koirala, Nabin [3 ]
Ding, Hao [4 ]
Budker, Dmitry [5 ]
Wickenbrock, Arne [5 ]
Heute, Ulrich [6 ]
Groppa, Sergiu [4 ]
Muthuraman, Muthuraman [4 ,8 ]
Deuschl, Gunther [7 ]
机构
[1] Sultan Qaboos Univ, Dept Elect & Comp Engn, Muscat 123, Oman
[2] Univ Engn & Technol, Dept Biomed Engn, Lahore 54890, Pakistan
[3] Yale Univ, Haskins Labs, New Haven, CT 06511 USA
[4] Johannes Gutenberg Univ Mainz, Univ Med Ctr, Dept Neurol, Movement Disorders & Neurostimulat,Biomed Stat & M, D-55131 Mainz, Germany
[5] Johannes Gutenberg Univ Mainz, Helmholtz Inst Mainz, GSI Helmholtz Zent Schwerionenforschung, D-55128 Mainz, Germany
[6] Univ Kiel, Inst Digital Signal Proc & Syst Theory, Fac Engn, D-24143 Kiel, Germany
[7] Univ Kiel, Dept Neurol, D-24105 Kiel, Germany
[8] Johannes Gutenberg Univ Mainz, Univ Med Ctr, Movement Disorders & Neurostimulat, Biomed Stat & Multimodal Signal Proc,Dept Neurol, Langenbeckstr 1, D-55131 Mainz, Germany
来源
EBIOMEDICINE | 2022年 / 82卷
关键词
Multiple sclerosis tremor; Essential tremor; Parkinson's disease tremor; Electromyogram; Accelerometer; PARKINSONS-DISEASE; CONSENSUS STATEMENT; RATING-SCALE; ACCELEROMETER; DISCRIMINATION; DIAGNOSIS; SIGNAL; TOOL;
D O I
10.1016/j.ebiom.2022.104152
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Tremors are frequent and disabling in people with multiple sclerosis (MS). Characteristic tremor frequencies in MS have a broad distribution range (1-10 Hz), which confounds the diagnostic from other forms of tremors. In this study, we propose a classification method for distinguishing MS tremors from other forms of cerebellar tremors. Methods Electromyogram (EMG), accelerometer and clinical data were obtained from a total of 120 [40 MS, 41 essential tremor (ET) and 39 Parkinson's disease (PD)] subjects. The proposed method - Soft Decision Wavelet Decomposition (SDWD) - was used to compute power spectral densities and receiver operating characteristic (ROC) analysis was performed for the automatic classification of the tremors. Association between the spectral features and clinical features (FTM - Fahn-Tolosa-Marin scale, UPDRS - Unified Parkinson's Disease Rating Scale), was assessed using a support vector regression (SVR) model. Findings Our developed analytical framework achieved an accuracy of up to 91.67% using accelerometer data and up to 91.60% using EMG signals for the differentiation of MS tremors and the tremors from ET and PD. In addition, SVR further revealed strong significant correlations between the selected discriminators and the clinical scores. Interpretation The proposed method, with high classification accuracy and strong correlations of these features to clinical outcomes, has clearly demonstrated the potential to complement the existing tremor-diagnostic approach in MS patients. Copyright (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Classification of Tremor and Myoclonus: An Explainable Machine Learning Approach
    Van der Brandhof, E.
    Tuitert, I.
    Van der Stouwe, A. M.
    Elting, J. W.
    Dalenberg, J.
    Biehl, M.
    Tijssen, M.
    MOVEMENT DISORDERS, 2024, 39 : S724 - S724
  • [2] Classification of Tremor and Myoclonus: An Explainable Machine Learning Approach
    Van der Brandhof, E.
    Tuitert, I.
    Van der Stouwe, A. M.
    Elting, J. W.
    Dalenberg, J.
    Biehl, M.
    Tijssen, M.
    MOVEMENT DISORDERS, 2024, 39 : S724 - S724
  • [3] Machine learning aided Android malware classification
    Milosevic, Nikola
    Dehghantanha, Ali
    Choo, Kitn-Kwang Raymond
    COMPUTERS & ELECTRICAL ENGINEERING, 2017, 61 : 266 - 274
  • [4] Assistive techniques and their added value for tremor classification in multiple sclerosis
    Koirala, Nabin
    Hossen, Abdulnasir
    Isaias, Ioannis U.
    Volkmann, Jens
    Muthuraman, Muthuraman
    NEURAL REGENERATION RESEARCH, 2024, 19 (05) : 977 - 978
  • [5] Assistive techniques and their added value for tremor classification in multiple sclerosis
    Nabin Koirala
    Abdulnasir Hossen
    Ioannis U.Isaias
    Jens Volkmann
    Muthuraman Muthuraman
    Neural Regeneration Research, 2024, 19 (05) : 977 - 978
  • [6] On the classification of tremor signals into dyskinesia, Parkinsonian tremor, and Essential tremor by using machine learning techniques
    Ferreira, Gabriel A. S.
    Teixeira, Joao Lucas S.
    Rosso, Ana Lucia Z.
    De Sa, Antonio Mauricio F. L. Miranda
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 73
  • [7] Machine learning classification of multiple sclerosis in children using optical coherence tomography
    Ciftci Kavaklioglu, Beyza
    Erdman, Lauren
    Goldenberg, Anna
    Kavaklioglu, Can
    Alexander, Cara
    Oppermann, Hannah M.
    Patel, Amish
    Hossain, Soaad
    Berenbaum, Tara
    Yau, Olivia
    Yea, Carmen
    Ly, Mina
    Costello, Fiona
    Mah, Jean K.
    Reginald, Arun
    Banwell, Brenda
    Longoni, Giulia
    Ann Yeh, E.
    MULTIPLE SCLEROSIS JOURNAL, 2022, 28 (14) : 2253 - 2262
  • [8] Tremor in multiple sclerosis
    Koch, Marcus
    Mostert, Jop
    Heersema, Dorothea
    De Keyser, Jacques
    JOURNAL OF NEUROLOGY, 2007, 254 (02) : 133 - 145
  • [9] Tremor and multiple sclerosis
    Ofori, Edward
    Sosnoff, Jacob J.
    Morrison, Steven
    Boes, Morgan K.
    Pula, John H.
    Motl, Robert W.
    JOURNAL OF SPORT & EXERCISE PSYCHOLOGY, 2011, 33 : S95 - S95
  • [10] Tremor in multiple sclerosis
    Alusi, SH
    Glickman, S
    Aziz, TZ
    Bain, PG
    JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 1999, 66 (02): : 131 - 134