THE SIGMA FUNCTION OVER A FAMILY OF CURVES WITH A SINGULAR FIBER

被引:2
|
作者
Fedorov, Yuri [1 ]
Komeda, Jiyro [2 ]
Matsutani, Shigeki [3 ]
Previato, Emma [4 ]
Aomoto, Kazuhiko [5 ]
机构
[1] Univ Politecn Cataluna, Dept Math, Barcelona 08034, Spain
[2] Kanagawa Inst Technol, Dept Math, 1030 Shimo Ogino, Atsugi, Kanagawa 2430292, Japan
[3] Kanazawa Univ, Grad Sch Nat Sci & Technol, Kakuma Kanazawa 9201192, Japan
[4] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
[5] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
基金
日本学术振兴会;
关键词
ABELIAN FUNCTIONS; ADDITION FORMULAS; TRIGONAL CURVE; SURFACES;
D O I
10.1007/s11856-022-2340-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate the behavior of the sigma function over the family of cyclic trigonal curves X-s defined by the equation y(3) = x(x - s)(x - b(1))(x - b(2)) in the affine (x, y) plane, for s is an element of D epsilon := {s is an element of C parallel to s vertical bar < epsilon}. We compare the sigma function over the punctured disc D-epsilon*= D-epsilon \ {0} with the extension over s = 0 that specializes to the sigma function of the normalization X-<(0)over cap> of the singular curve X-s=0 by investigating explicitly the behavior of a basis of the first algebraic de Rham cohomology group and its period integrals. We demonstrate, using modular properties, that sigma, unlike the theta function, has a limit. In particular, we obtain the limit of the theta characteristics and an explicit description of the theta divisor translated by the Riemann constant.
引用
收藏
页码:345 / 402
页数:58
相关论文
共 50 条
  • [1] The sigma function over a family of curves with a singular fiber
    Yuri Fedorov
    Jiyro Komeda
    Shigeki Matsutani
    Emma Previato
    Kazuhiko Aomoto
    Israel Journal of Mathematics, 2022, 250 : 345 - 402
  • [2] INEQUALITIES BETWEEN THE CHERN NUMBERS OF A SINGULAR FIBER IN A FAMILY OF ALGEBRAIC CURVES
    Lu, Jun
    Tan, Sheng-Li
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (07) : 3373 - 3396
  • [3] Rank Statistics for a Family of Elliptic Curves over a Function Field
    Pomerance, Carl
    Shparlinski, Igor E.
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2010, 6 (01) : 21 - 40
  • [4] The sigma function for trigonal cyclic curves
    Komeda, Jiryo
    Matsutani, Shigeki
    Previato, Emma
    LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (02) : 423 - 447
  • [5] The sigma function for trigonal cyclic curves
    Jiryo Komeda
    Shigeki Matsutani
    Emma Previato
    Letters in Mathematical Physics, 2019, 109 : 423 - 447
  • [6] Coverings of singular curves over finite fields
    Aubry, Y
    Perret, M
    MANUSCRIPTA MATHEMATICA, 1995, 88 (04) : 467 - 478
  • [7] Sigma-Delta-over-Fiber
    Torfs, G.
    Vandierendonck, A.
    Zardosht, F.
    Meysmans, C.
    Wang, X.
    Li, H.
    Demeester, P.
    2024 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION, OFC, 2024,
  • [8] KAHLER FIBER SPACES OVER CURVES
    FUJITA, T
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1978, 30 (04) : 779 - 794
  • [9] Algebraic Construction of the Sigma Function for General Weierstrass Curves
    Komeda, Jiryo
    Matsutani, Shigeki
    Previato, Emma
    MATHEMATICS, 2022, 10 (16)
  • [10] L-functions of singular curves over finite fields
    Castro, FN
    Moreno, CJ
    JOURNAL OF NUMBER THEORY, 2000, 84 (01) : 136 - 155